Major Geological Properties of Sedimentary Basin and Related Technical Challenges for CO₂ Aquifer Storage in China

中国主要地质特点及其对CO2咸水层封存的技术挑战

Ning Wei 魏宁 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences

Outline

- Background of CO₂ geological storage
- ✓ CO₂地质封存背景
- > Major geological setting of sedimentary basins in China
- ✓ 中国沉积盆地的主要地质特点
- Major technical challenges related to geological setting
- ✓ 地质特征导致的主要技术挑战
- > The possible solution to the technical challenges
- ✓ 可能的解决策略
- Summary
- ✓结论

Background of CO₂ geological storage

CCS system

CO₂ capture+ compression +transportation (pipeline) + geological storage (Aquifer storage) CO₂ 捕集+ 压缩 +管道运输 + 封存场地(咸水层封存)

Background of CO₂ geological storage

CO₂ emission sources and storage capacity in China

Potential storage Sites in China

Total estimated CO₂ geological storage capacity (basin scale theoretical capacity)

	Total	Estimated	Estimated	Estimated	Estimated
	estimated	capacity in oilfields	capacity in gas fields	Capacity in un-	Capacity in deep
	capacity (MtCO ₂)	by proved	by proved	mineable coalbed	saline formation
		OOIP(MtCO ₂)	OGIP(MtCO ₂)	(MtCO ₂)	(MtCO ₂)
Onshore	2,380,000	4,600	4,280	12,000	2,280,000
Total	3,088,000	4,800	5,180	12,000	3/066,000

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Li, Wei, Dahowski, et al, 20

Background of CO₂ geological storage

Preliminary results of sources-sinks matching for China

- There are a number of potential opportunities for low and even negative cost storage options;
- 低成本的CCS技术早期机遇;
- The vast majority of storage potential is offered by the large and high capacity deep saline formations at estimated transport and storage costs of less than \$10/tCO₂ (without capture)
- 大多数CCS项目的运输与封存成本 低于10US\$(不含捕集成本)
- However, the properties of geological formation impacts the storage process dramatically, including the technical and cost

aspect, further work should be done.

中

China Australia Geological Storage of CO2

澳二氧化碳地质封存

Dahowski, Li et al, 2012

Outline

- ▶ Background of CO₂ geological storage
 ✓ CO₂地质封存背景
- > Major characteristics of geological formation in China
- ✓中国CO₂地质结构的主要特点
- Fechnical challenges for CO₂ geological storage in China
- ✓CCUS技术实施的主要技术障碍
- > The possible solution to the technical challenges
- ✓可能的解决策略
- > Summary
- ✓结论

The basic features of sedimentary basins in China

中澳二氧化碳地质封存

•SB Siberian Block; T Tarim block; Q Qaidam Block; KL Kunlun Block; SC YangZhi Block; NC North China Block

三叠纪时期左右,多个小板块拼合块成中国大陆(依据板块理论,李德生,2002)

The geological characteristics of Chinese sedimentary basin is very complex.

地质结构的复杂特征增加了中国实施CO₂地质封存的技术难度与不确定性 The complexity of geological setting increases the uncertainty of CO₂ geological

Basin Time	Tarim	Junggar	Turpan	Jiuquan	Qaidam	Sichuan	Ordos	Bohai Bay	Songliao	Erlian	Jianghan	Jiangsu	Sanshui	Pearl River Mouth	BeibuWan	Yinggehai
Q		Non	-marine F	acies												
N														Ta	arget formati	on
Е		Major	target for	mation						Τa	arget formati	on				
K									Target							
J						Tar	get forma	tion	formation							
Т			Transf	ormation	Facies					Trans	sformation F	Facies				
Р																
С																
D			Μ	arine Fac	ies											
S																
0																

- Target storage formations are mainly formed by non-marine clastic deposits
- High heterogeneity and poor continuity of seal-reservoir pairs
- Challenges in prediction and assessment of sealing, injectivity and capacity

Sedimentary facies

Non-marine models (Idar Akervoll, 2011)

Reservoir models in North Sea (Idar Akervoll, 2011)

2. Heterogeneity of seal-reservoir pairs –affecting the seal, capacity and injectivity.

"组合盖层"的非均质性质导致优势流动及其控制问题。直接关系到密封性、封存容量和注入性。

China Australia Geological Storage of CO₂

中澳二氧化碳地质封存

Sedimentary facies

3. The low average thickness of seal-reservoir pairs (sedimentary rhythm) 平均层厚小

中澳二氧化碳地质封存

- rhythm of sedimentary system
- •多旋回沉积,平均层厚度数米,盖层及盖层多而薄
- Heterogeneity of seal-reservoir pairs
- •应重视"组合盖层"的密封性评价,直接关系到密封性、封存容量和注入性。

Outline

- Background of CO₂ geological storage
- ✓ CO₂地质封存背景
- > Major geological setting of sedimentary basins in China
- ✓ 中国沉积盆地的主要地质特点
- Major technical challenges related to geological setting
- ✓ 地质特征导致的主要技术挑战
- Possible solution to the technical challenges
- ✓可能的解决策略
- > Summary
- ✓结论

Technical challenges for CO₂ geological storage in China

- Main challenges related to geology feature
- 地质特点导致的主要挑战
- Technical challenges for CCS deployment in China
- 中国的封存技术的主要技术障碍

Basin features and challenges: tectonic structure

•Small tectonic units and small basins are segmented by faults system

- •Less stability of storage sites and tectonic units
- Challenges in the mechanical stability of faults and tectonic units
 Seal-reservoirs consist of multiple thin layers. The average thickness is from meters to twenty meters.
- •Complex migration pattern of CO_2 plume and pressure plume in heterogeneous formation
- •Challenges in monitoring and evaluation technologies.

Major geological challenges to CCS

Technologies challenges are mainly caused by tectonic activities and sedimentary history. Major challenges are as follows

The stability of tectonic units and faults: Stability of tectonic unites might be affected by large-scale injection, cause stability problems, such as induced seismic activities, faults re-activity. The Seal ability and stability of caprock should be evaluated carefully before large-scale injection.

The stability of caprock: High pressure injection might fracture the caprock with the complex in-situ stress field and complex structure.

Safety of operation and after closure: the facility need for further improvement for complex geological feature

Migration of CO₂ and pressure plume: Multi-layered and heterogeneous sealreservoirs pairs decreases the sweep efficiencies, effective storage capacity and cause preferential migration, special injection strategy is needed. Special attention should be paid for those formations with braided and meandering facies.

<u>Risk mitigation method.</u> Leakage prediction and mitigation methods are very important for preferential migration and possible leakage scenario.

Technical challenges for CO₂ geological storage in China

- Main challenges related to geology feature
- 地质特点导致的主要挑战
- Technical challenges for CCS deployment in China
- 中国的封存技术的主要技术障碍

Technical challenges for CO₂ geological storage in China

The phases of CO₂ geological storage projects

 Screening/Characterization (2~5years) Site Screening Exploration Permit Site Characterization Site Selection Project plan and primary design 	 ★ Operation phase(20~50y) -Storage Permission -Site Design and Construction -Site Preparation -Injection/Post-injection -Monitoring & Evaluation -Environmental Evaluation 	 Phase-Closure/Post- Closure(500~1000y) Site Closure Permit Decommissioning Site Closure Certificate Transfer of Liability Long-term monitoring and managing
design		and managing

Development phases associated with CO₂ storage projects

The different stages will face different technical challenges

The possible solution to those technologies barriers

- Site characterization and evaluation technologies with high definition: 高精 度的物探、测井、试井等测试数据用于密封性、封存量、可注性、稳定性 等场地评估;
- High definition model and prediction technologies: 储盖层的精细建模、取 值及预测技术
- Monitoring and verification technologies: 监测技术的准确性与封存过程评价技术
- Process and risk management: 压力与晕控制、控流、堵漏等过程控制与风险管理技术

The geological feature bring lots challenges to CCS deployment in China 中国特殊地质要求更高精度和针对性的技术与设备;

Outline

- Background of CO₂ geological storage
- ✓CO₂地质封存背景
- Major geological setting of sedimentary basins in China
- ✓中国沉积盆地的主要地质特点
- > Major technical challenges related to geological setting
- ✓地质特征导致的主要技术挑战
- > The possible solution to technical challenges
- ✓可能的解决策略
- > Summary
- ✓结论

The possible solution to technical challenges

- Carry out technology R &D activities toward geological feature in a more strategic way, including, large-scale well drilling, storage technologies, site characterization and prediction, site screening and selection, process optimization, risk management, monitoring and safety evaluation technologies, and so on.
- 针对地质特点战略性地开展CCS关键技术的研发与示范,包含:规模化钻井、封存技术、场地表针与筛选、过程优化、风险控制、安全监测与评价等技术。

The possible solution to technical challenges

R & D activities of CCS technologies

技术群 technologies	要素技术 technology components					
	场地勘察与现场测试 high definition characterization technologies					
场地表征与适宜性评价	室内测试与参数取值 Lab experiment and properties up-scaling technologies					
Site characterization, and	复杂地质体系的建模与模拟技术 modeling with high definition geological data					
evaluation	复杂地质条件的评价方法 evaluation method on complex geological formation- such					
	as, faults, caprock integration, migration pathways and so on					
	钻井、固井与完井 Well drilling & complication with multi-layered formation					
施工与运行管理	选层技术 Formation selection					
Development and operation	地面设施 Surface facilities					
management and optimization	井下施工设备 Underground facilities					
	工程试运行与重评估 Testing and re-evaluation of projects					
	物理方法 Geophysics monitoring methods, such as, 3D 2D seismic investigation					
	地球化学监测 Geochemistry					
	深井实时多物理量监测 down-hole monitoring-P/T/Q/					
Monitoring evaluation and pre-	深井实时多层取样 real-time multi-layered formation sampling					
warning tech	微震监测与评价 micro-seismic monitoring and evaluation					
warning teen	地面变形 surface deformation					
	地面大气、土壤环境监测 gas monitoring					
	其他技术 other monitoring technologies					
	修井技术,套管、水泥等补救技术 workover, such as, casing, cement, workover					
风险管理	封隔器失效 well packer failure					
Risk management	井喷制止 CO ₂ eruption					
Risk management	也层泄漏 leakage					
	诱发地震调控 mitigation of induced seismic events					
• 中 澳 二 氧 化 碳 地 质 封 存 · · · · · · · · · · · · · · · · · ·						

Outline

- Background of CO₂ geological storage
- ✓CO2地质封存背景
- > Major geological setting of sedimentary basins in China
- ✓中国沉积盆地的主要地质特点
- > Major technical challenges related to geological setting
- ✓地质特征导致的主要技术挑战
- > The possible solution to the technical challenges
- ✓可能的解决策略
- Summary
- ✓结论

Summary

➤ There are huge CCS potential for CCS deployment in China ➤ 中国具有巨大地CCS实施潜力。

- The unique tectonic structure and sedimentary history of bring challenges and uncertainty to CO₂ aquifer storage technologies
- ▶中国的CO₂封存场地的构造和沉积环境带来了特殊的地质特征,同时也给CO₂咸水层封存带来了一系列的技术挑战和不确定性。
- The solution to those challenges are R &D of key technologies in a strategic way.
- ▶建议的应对挑战的措施:策略性的关键技术的研发与示范。

Thank you !

for your attention!

Email: Nwei@whrsm.ac.cn

