

新疆广汇煤制气CCUS先导项目预可行性研究

Pre-feasibility study on Xinjiang Guanghui CCUS Pilot Project

Perth, Australia, 26 June, 2018

Content

1. 项目的背景

- 2. 项目概况
- 3. 捕集环节可行性分析
- 4. 输送环节可行性分析
- 5. 封存试验场地筛选
- 6. 封存环节可行性分析
- 7. 环境风险评估
- 8. 总结

- 1. Background
- 2. Project overview
- 3. Feasibility analysis on capture
- 4. Feasibility analysis on transportation
- 5. Storage test site screening
- 6. Feasibility analysis on storage
- 7. Environmental risk assessment
- 8. Summary

China Australia Geological Storage of CO₂ 中 澳 二 氧 化 碳 地 质 封 存

- ▶ 中澳二氧化碳地质封存项目(CAGS 3)
- China Australia Geological Storage of CO₂ (Phase 3)
- ▶ 新疆大学二级项目(CGS):新疆广汇煤制气CCUS先导试验预可行性研究
- > The Feasibility Research of Xinjiang Guanghui CCUS Pilot Project (2016-2018)
- > 参与单位:新疆大学、中科院武汉岩土力学研究所
- > Xinjiang University, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences

- > Xinjiang has various industrial sectors and numerous CO_2 emissions.
- \succ The CO₂ emission points have relatively intensive distribution.
- > Xinjiang has abundant of oil resources.

Oil fields distribution in Xinjiang

CO₂ sources distribution in Xinjiang

2. 项目概况 Project overview

□ Main activities:

- Field investigation
- CAGS-III Symposium
- Training course in Xinjiang University
- Other academic activities

2. 项目概况 Project overview

China Australia Geological Storage of CO₂ 中 澳 二 氧 化 碳 地 质 封 存

100

2. 项目概况 Project overview

> Several oil fields or oil blocks are suitable for CO_2 -EOR.

3. 捕集环节可行性分析 Feasibility analysis on capture

Capture technology

- CO2 concentration: 99.8%; •
- Capture scale: 0.1 Mt/a ۲

3.捕集环节可行性分析 Feasibility analysis on capture

□ Energy consumption

序号	项目	小时	「耗量	产	品单耗	耗貨	单位能耗	
		单位	数量	单位	数量	单位	数量	MJ/t
1	电	k₩h	1282	k₩h	226.554	MJ/kWh	10.89	2467.175
2	新鲜水	t	2	t	0.353	MJ/t	6.28	2.22
3	循环冷却水	t	510	t	90.127	MJ/t	4.19	377.632
8	除盐水	t	1	t	0.177	MJ/t	96.3	17.018
4	蒸汽 (0.3MPaG)	t	18	t	3. 181	MJ/t	2763	8788.959
5	工艺压空 (0.6MPaG)	Nm ³	100	Nm ³	17.672	MJ/Nm ³	1.17	20.676
6	仪表压空 (0.6MPaG)	Nm^3	50	Nm ³	8.836	MJ/Nm ³	1.59	14.049
7	氮气 (0.6MPaG)	Nm^3	100	Nm ³	17.672	MJ/Nm ³	6.28	110. 98
	加工总能耗				11798.70)9 MJ/t		

注:耗能指标采用《石油化工设计能耗计算标准》(GB/T 50441-2007),以CO2产品47533t/a计。

China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

Transportation routes

The distance of different transportation options

Well	DI-2	DI-12	DI-20
Truck transport	76km	73.3km	86 km
distance			
Pipeline transportation	63.6km	73.3km	75.8km
distance			

> Terrain conditions: flat; mainly gobi and desert.

- > Truck transport conditions :
 - Pressure : 2MPa, temperature: -30°C;
 - Tank capacity: 50t
 - Price: 1.1 yuan/(t.km)

DPipeline design parameters

- Dense phase, liquid
- Pipe laying depth: 1.0-1.2m

Name	Unit	Value
Import pressure	Pin[MPa]	12
Export pressure	Pout[MPa]	9.2
Delivery temperature	T [K]	>20°C
Delivery scale	M[t/a]	0.1
Delivery distance	L [km]	80
CO ₂ Compression factor	ZCO ₂	0.32
CO_2 density	ρ_{CO2} [kg/m ³]	625-1025
Steel density	$ ho_{s} \left[g/cm^{3} \right]$	7.85
Electrovalency	pc [RMB/KW.h]	0.066
Device capacity factor	CF	0.8
Period of depreciation	N[yr]	20

DPipeline cost

Pipeline transportation cost

	3 years [Y]	20 years [¥]
增压成本 Supercharging cost	8.934×10^{4}	5956×10^{4}
固定总成本 Fixed total cost	2.125×10^{8}	2.125×10^{8}
运营成本 Operation cost	$670.86 \times 10^{4/yr}$	$543.38 \times 10^4 /\mathrm{yr}$
运输总成本 Total cost	2.415×10^{8}	3.807×10^{8}
均化成本 Average cost	115.20 /t CO ₂	38.00 /t CO ₂
平准化成本 Levelized cost	1.44 / (t. km)	0.48/ (t. km)

Truck transportation cost & Pipeline transportation cost

Total cost	Distance (km)	3 years (¥)	20 years (¥)
Tanker transportation	76	1.053×10 ⁸	7.02×10^{8}
Pipeline transportation	63.6	2.415×10^{8}	3.807×10 ⁸

For a 3-year pilot project, it is better to choose truck transportation.
For a 20-year project, the pipeline transportation is much cheaper.

5.封存试验场地筛选 Storge test site screening

China Australia Geological Storage of CO₂ 中 澳 二 氧 化 碳 地 质 封 存

5.封存试验场地筛选 Storge test site screening

Natural condition	 The farer away from the communities of plants and animals, the lower the environment risk. Flat surface will reduce the engineering cost. 	IC
Reservoir Condition	 Higher permeability, easier for injection. Thick caprock will increase the safety. Pressure, viscosity and temperature 	
Source and sink match	 Shorter distance, lower transportation cost. Reservoir must have enough capacity. More wells, more flexible. 	
caos chi	ina Australia Geological Storage of CO2	

中澳二氧化碳地质封存

5.封存试验场地筛选 Storge test site screening

Natural condition

- ✓ Gobi desert
- Uninhabited, no residential area
- Open and flat
- ✓ little vegetation covered
- ✓ No surface water system

China Australia Geological Storage of CO₂ 中 澳 二 氧 化 碳 地 质 封 存

C

5.封存试验场地筛选 Storge test site screening

China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

Reservoir properties and wells

Region	DI-12	DI-2			
Reservoir description	Reservoir: Gray, medium - thin, medium coarse, conglomerate sandstone, Caprock: Mudstone, > 15m thick				
Buried depth of reservoir	Middle depth 1115 m	Middle depth 970 m			
Ground temperature	44.6°C	40.3°C			
Reservoir dip angle	5-8°	5-8°			
Formation pressure	Central pressure8.678 MPa	Central pressure7.043 MPa			
Oil area of oil reservoir	5.57 km ² , > 6.6m thick	1.43 km ² , > 5 m thick			
Initial oil saturation	55.8%	54.4%			
porosity	19.20%	17.80%			
Effective thickness	6.6 m	5.0 m			
Viscosity of crude oil (mPas)	39.8 (ground)	110.1 (ground)			
Density of crude oil g/cm ³	0.87-0.883	0.9-0.909			
Saturation pressure	5.773 MPa	5.92 MPa			
Pressure coefficient	0.778	0.726			
Saturation degree	66.5%	84.1%			
Injection well	20 (not all opened)	9 (not all opened)			
Producing well	45 (not all opened)	23 (not all opened)			
Well spacing	< 280 m	< 280 m			
Time and degree of reservoir mining	Development in 2005 The recovery degree is less than 15%	Development in 2007 The recovery degree is more than 15%			

5.封存试验场地筛选 Storge test site screening

China Australia Geological Storage of CO₂ 中 澳 二 氧 化 碳 地 质 封 存

□ Brief introduction to DI-2

➤The DiNan Bulge was formed in the middle late Carboniferous.

Upper Jurassic , some Middle Jurassic, Triassic and Permian formations are missing ,
 because of the Indosinian movement and denude start from the end of the Upper Triassic.
 BaDaoWan group belongs to the low/early Jurassic, 900m ~ 1000m depth.

➢Below BaDaoWan group is the BaShan group, which belongs to Upper Carboniferous.

Structural map of top Jurassic BaDaoWan Group

Well distribution of DI-2 field

model of Reservoir and well

Simulation injection scheme

Pattern 1

Pattern 2

➢ 7 injection schemes
➢ Mixed Gas is 67% N₂ and 33% CO₂.
➢ 0.1 million tons CO₂ per year, for 10 years.
➢ The oil field have already test the mixed gas EOR in few wells, and it is working.

Simulation Result

Simulation Result

The oil production rate of Di-2, with current 17 production wells, CO₂, 250°C

- After about 5 years injection,
 reach the max production
 rate.
- > The max rate is 43.37 m³/day.
- ➤ 2.551 m³/day/well.

□ Transport component:

		Risk asses	sment								
NO.	Risk list	Consequen ce (1~5)	Possibility (1~5)	Controllability (1~5)	Explain	25	Controlled				Unacceptable
1	System design defects	4	2	4			controlled				
2	Insufficient material for system design	4	2	4	Through strict audit procedures	ity)					
3	Improper design in the process of piping design (such as incorrect or inappropriate valve placement)	4	2	4	and process management, the risk of design can be very low.	Possibil 50					
4	Improper operation in the process of installation	4	2	4	Strengthening the management of	e*					
5	Equipment or material quality is not passed in the process of installation, pipe laying and valve room	4	2	4	the construction process can greatly improve the controllability of the construction risk	Risk(Consequence*Possibility) 5		1224568			
6	Overpressure operation	4	2	4		CO	13	1,2.3,4,5,6,8	,9		
7	Operation of pipeline / equipment / valve malfunction, leakage, corrosion	4	3	4	Establish training process and	Risk(
8	Operation failure of pipeline, equipment and valve	4	2	4	strengthen operation management			7,13,17			
9	Human error in operation	4	2	4			•	•	•		
10	Unintentional destruction caused by third parties (mining operations)	4	4	3	Strengthen publicity, enhance public awareness and increase the identification of pipeline	5	14	,15	12 Accep	table 11	
11	Failure of formation / soil movement to pipeline / equipment / valve chamber	4	2	2	Establishment of emergency chain	0	5	4	3	2	1 0
12	External corrosion (soil type, wall thickness loss, abnormal density, rupture pressure increase, DC/AC interference)	3	1	3	mechanism						Controllability
13	Non fault leakage and corrosion caused by pipe release operation	3	4	5	Rationalizing the operation						
14	Failure, leakage, corrosion caused by maintenance of pipeline / equipment / valve	3	2	4	Arrangement and strengthening the monitoring of the operation						
15	Failure, leakage, corrosion in the process of redebugging	3	2	4	process						
16	CO ₂ gas source interruption	1	1	5	Strengthening communication with the suppliers of gas sources						
17	Phase transition caused by temperature change	3	4	4	Select the appropriate thermal insulation material						

□ Storage component:

Lithosphere

- Geology
- Fluid

Storage system

- Drill hole: well completion, borehole sealing and abandonment
- Carbon dioxide
 interaction
- CO₂ storage

External

- Geology
- Near surface environmental: human behavior, land environment
- Future human activities
- Influence receptor
- System performance
- Environmental medium: atmosphere, soil, surface water, and groundwater
- Health
- Animal and plant
- Microorganism

China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

□ Storage component:

> Environmental risk assessment standard

The classification of the risk possibility level

	The definition of risk possibility						
Туре	Description						
Rare 1	The possibility is very low, never occur before. But is possible in theory.						
Unlikely 2	The occurrence possibility is very small within the project period.						
Possible 3	My occur in the project period.						
Likely 4	May occur more than one time in the project period.						
Almost certain5	May occur every year.						

□ Storage component:

The consequence serious degree classification

Influence	Grade	Influence degree
Insignificant	1	The environment index like the soil/underground water/surface water/environment air does not exceed the environment quality standard or environment background value of the project site. Or the carbon dioxide density exceeds the environment background value. Do nor have continuous influence on the environment risk receptors.
Minor	2	The environment index like the soil/underground water/surface water/environment air does not exceed the environment quality standard or environment background value of the project site. Or the carbon dioxide density exceeds the environment background value. Have some adverse influence on the environment risk receptor but can be solved and recovered.
Significant	3	The environment index like the soil/underground water/surface water/environment air exceeds the environment quality standard or environment background value of The project site. Or the carbon dioxide density exceeds the environment background value. Have certain adverse influence on the environment risk receptor but can be solved and recovered.
Major	4	The environment index like the soil/underground water/surface water/environment air exceeds the environment quality standard or environment background value of the project site. Or the carbon dioxide density exceeds the environment background value. Have some adverse influence on the environment risk receptor and is difficult to be recovered.
Severe	5	The most environment indexes of soil/underground water/surface water/environment air exceed the environment quality standard or environment background value of the project site. Or the carbon dioxide density exceeds the environment background value. Have serious influence on the environment risk receptor but can bring some irreversible damages.

□ Storage component:

Work out the risk matrix by calculating the influence degree*possibility based on the above mentioned classification criteria. The higher than value is, the higher risk occurrence possibility is and the more serious the consequence is.

Risk consequence = possibility * the degree of influence.

		Influence						
		Insignificant1	Minor 2	Significant 3	Major4	Severe 5		
	Almost certain5	5	10	15	20	25		
	Likely 4	4	8	12	16	20		
Possibility classification	Possible3	3	6	9	12	15		
Classification	Unlikely 2	2	4	6	8	10		
	Rare 1	1	2	3	4	5		

The consequence matrix

Analysis result

□ Storage component:

E12 Near surface aquifers and surface waters

.

E12 Near surface aguifers and surface waters L1 Geographical position E13 Terrestrial plants and animals L2 Natural resources E14 Terrestrial ecosystem L3 Reservoir type E15 Drilling L4 Reservoir geometry E16 Mining and other underground activities L5 Reservoir development E17 Human activities in the surface environment L6 Cover or seal S1 Formation damage L7 Extra seal S2 Lining and well completion S3 Workover L8 Rock or diagenesis S4 Monitoring well L9 Pore structure S5 Hole closing and sealing L10 Unconformities S6 Seal failure L11 Heterogeneity S7 Blowout L12 Fracture and fault S8 Old Well L13 Undetected fracture S9 Soil peristal sis around the borehole L14 Vertical geothermal gradient S10 Influence of reservoir press A1 Closed performance loss L15 Formation pressure S11 Effect of reservoir p A2 Release to the atmosphere L16 Pressure and mechanical characteristics S12 Interaction with I -A3 Influence on Soil and sediment S13 Mechanical proces L17 Physical properties of rock A4 Influence on Surface Water S14 L18 Fluid characteristics S15 Adsorption of carbon dioxid A5 Groundwater pollution L19 Hydrogeology S16 Hear A6 Hydrogeological influence L20 Hydrocarbon S17 Co A7 Influence of geochemical reaction E1 Neotectonic activity S18 Carbon dioxide volume a A8 The health effect of CO2 E2 Earthquake S19 Carbon dio: A9 Toxicity of pollutants S20 Schedu E3 Demographic characteristics A10 The effects of physical destruction S21 Pre closed sto E4 Life style A11 The influence of ecological modification E5 Land and water use A12 The effects of CO2 on animals S23 Pr E6 Community characteristics A13 The effect of CO2 on plants E7 Building A14 Ecotoxicology of pollutants E8 Topographic features **—** A15 Ecological effect E9 Soil and sediment **—** A16 Change of microorganism system E10 Atmosphere and meteorology -0 1015 20 E11 Hydrologic state and water balance

25

□ Storage component:

Evaluation results

Soil

Surface water

Atmosphere

Risk level	
Acceptable risk	Extra-low
	Low
Unacceptable risk	Moderate
	High
	Extra-high

- \square Good geologoical conditions for CO₂-EOR
 - Good reservoir physical properties
 - Cainan oil field best for EOR;
 - Three oil blocks: DI-12, DI-20, DI-2 (best)
- **D**emonstration project recommend:
 - Xinjiang Guanghui + DI-2 block (Cainan oil field)
 - Based on the economic analysis on transportation component:
 - a) For a short time pilot, truck is recommended;
 - b) For a long time demonstration project, pipeline is cheaper.
- □ Risk assessment:
 - Leakage or erosion by pipe venting;
 - Leakage from re-builded wells; phase transition caused by temperature change; caprock damaged by mining.
- Current barrier:
 - The new planned nature reserve covers Guanghui pilot site.

- □ 用于CO₂-EOR的地质条件良好
 - 物性好;
 - 彩南油田最适于用CO₂-EOR;
 - 滴12、滴20、滴2(条件最好)
- □ 示范项目建议:
 - 新疆广汇+彩南油田滴2
 - 基于输送环节的经济性分析:
 - a) 短期试点, 推荐用罐车运输;
 - b) 长期示范项目, 推荐用管道运输。

□ 风险评价:

- 由于管道放空泄漏或腐蚀;
- 通过重建井泄漏,温度改变引起相变,其他矿 产开采破坏盖层;
- □ 当前障碍:
 - 新疆广汇试验场区处于新规划的自然保护区范围内。

Thanks for your attention 谢谢!

