Status and Policy of CCUS in the European Union

Cornelia Schmidt-Hattenberger

Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences Section 6.3 Geological Storage

CAGS Technical Workshop, 26 June 2017

Helmholtz-Zentrum

Humanity is a major factor in the global carbon cycle

CAGS Technical Workshop, 26 June 2017

Global emissions and 2°C goal – The role of COP21

Vorld Climate Conference Paris, December 2015 Paris Agreement/Conference of Parties COP21):

First climate agreement, which takes all countries into the duty to climate change mitigation actions International and legally binding objective: limit the temperature increase < 2°C

A below 2 °C goal requires atmospheric CO_2eq concentration of 430 – 480 ppm in 2100 for comparison: pre-industrial, historic (1850-1900) CO_2 concentration ~ 280 ppm *not shown here*

CCS should be part of the portfolio of GHG reduction

To achieve scenarios with $430 - 480 \text{ ppm CO}_2\text{eq}$ in 2100, so-called "negative" CO₂ emissions in the 2nd half of the century are demanded, as e.g., by BioEnergy-CCS (BECCS)

Nature Climate Change 6, pp.42–50 (2016), doi:10.1038/nclimate2870 / ◆ Representative Concentration Pathways (RCP)

Carbon dioxide capture – transport – storage - usage Goal: Reduction of CO₂ emissions

Modified after: Special Report CCS, IPCC 2005

CAGS Technical Workshop, 26 June 2017

The European Economic Area (EEA)

GFZ

Helmholtz Centre

 Agreement on the free movement of persons, goods, services and capital within the European Single Market is in place

28 EU member states

- 3 EFTA member states: Norway, Island, Liechtenstein (European Free Trade Association)
- Switzerland: bilateral treaties with EU

Source: https://www.regjeringen.no/en/dokumenter/meld.st.-5-2012-2013/id704518/sec1

European and national climate objectives

European Union (reference year 1990)

• Reduction of greenhouse gas emissions until 2030 by 40%

National (reference year 1990)

- Reduction of greenhouse gas emissions until 2020 by 40% Reduction from ~ 1.250 MtCO₂eq towards max. 750 MtCO₂eq
- Reduction of greenhouse gas emissions until 2050 by 80 95% but: in 2013 already a gap between the real trend and the envisaged goal of 85 MtCO₂eq

Global

The national climate protection plans submitted to Paris COP21 are insufficient to reach the 2 ° C target

Options for geological CO₂ storage

Modified

after:

Special

Helmholtz Centre

POTSDAM

The European legal framework – Directive 2009/31/EC

High level criteria of the so-called CCS Directive, which have to be fulfilled:

Safe and reliable storage operation, no detectable leakage

- Monitoring of injected CO₂ conforms modelled behaviour
- The site is evolving towards long-term stability

General Progress in Transposition:

(Source: Report from the EC to the European Parliament and the Council, reporting period May 2013-April 2016, based on the individual reports of 26 member states)

- The legislation of 16 Member States is fully conforming to the Directive
- Exchanges are ongoing with remaining Member States to bring their legislation fully in line

Specific Implementation Issues:

- Member States have not determined any new areas for storage sites, only Poland determined one storage area
- New assessments of available storage sites ongoing or planned: Bulgaria, (Germany), Greece, Hungary, Italy, The Netherlands, Sweden and UK
- Five German federal states have passed laws limiting or banning undergound CO₂ storage

The European legal framework – Directive 2009/31/EC

Feasibility for CCS retrofitting for new large-scale combustions plants:

 Assessment of technical and economical feasibility were made in Belgium (1), Czech Republic (1), Germany (5), Romania (6), Poland (10), Slovenia (1), Spain (5) → problems: economically not feasible, no suitable storage sites, technical incompatibility with the plants in operation

Research projects with relevance to the CCS Directive:

- Inspite of stagnation, ongoing research activities on underground storage in B, CZ, GE, F, HU, Malta, Lithuania, NL, Slovakia, Spain and UK.
- Some countries explored alternatives to CO₂ storage through various CO₂ utilisation options (Estonia, NL, Slovakia, Poland).

CO₂ transport and storage networks:

Two active CCS regional networks exist to develop transboundary solution for transport & storage:

- North Sea Basin Task Force (UK, NL, N, GE, B)
- Baltic Sea Region CCS Network (Estonia, GE, FIN, N, S)

In addition, B, NL, UK, F exploring possibilities for hubs for industrial & power CO_2 emissions in the areas of ports (Antwerpen, Rotterdam, Grangemouth, Tees Valley, Fos-sur-Mer) \rightarrow offers alternatives for countries without possibilities of storage.

Implementation of CCS – status in the European Union

(Modified after:http://www.globalccsinstitute.com/projects/large-scale-ccs-projects)

GFZ Helmholtz Centre

Large-scale CCS facilities:

Norway:

Sleipner CO2 Storage Project in operation, ~1 Mt CO₂/year

Snøhvit CO2 Storage Project in operation, ~0.7 Mt CO₂/year

Norway Full Chain CCS Project FEED of demo, expected to finalize in 2022

The Nederlands:

Rotterdam Opslag en Afvang Demonstratieproject (ROAD), stagnation/minor ongoing

UK:

Teesside Collective, emerging infrastructure of industrial hub, national strategic asset for UK

Caledonia Clean Energy Project, interim feasibility findings ongoing

Implementation of CCS – status in the European Union

(Source:http://www.globalccsinstitute.com/projects/ \rightarrow modified)

GFZ

Helmholtz Centre

POTSDAM

Pilot and demonstration projects:

Norway:

Svelvik Field Lab (Test bed, especially CO2 leakage testing)

Island

CarbFix Project (Full chain)

France:

Lacq/Rousse (Storage)

Germany: (Photo: TOTAL) Ketzin pilot project (Storage)

Spain: Hontomín (Storage)

(Photo: SINTEF)

(Photo: ResearchGate)

(Photo: GFZ)

European and national funding for all parts of the value chain

CO, capture

CO, source

(eg. power plant)

Helmholtz Centre

separation plant

CO.

transport

CO₂ usaɑe injection

CO₂ storage

compression unit

Selected research examples:

- Assessing the CO₂ storage potential in Europe CO₂StoP
- Vattenfall capture pilot plant Schwarze Pumpe
- Transport infrastructure for large-scale CCS in Europe
 CO₂Europipe
- First on-Shore CO₂ pilot storage in Europe **CO₂SINK**
- CO₂ capture from cement production **CEMCAP**

Current CCUS status in Germany

STORAGE

Helmholtz Centre

Ketzin – the first onshore European CO_2 pilot site reservoir: saline aquifer, sandstones of Upper Triassic Stuttgart Formation 620 - 650 m depth $P/T_{ini} \sim 62$ bar/33°C

From 2008-2013 about 67.000 t CO₂ injected

USAGE

Based on a research project (academia/ industry consortium) the company **Covestro** starts sustainable plastics production.

cardyon $\[\rightarrow CO_2\]$ -based polyurethane components, used as raw material for manufacturing premium foams.

• Polyurethane industry can reduce their dependence on oil and thus the size of their carbon footprint.

Current CCUS status in Germany

(Photo: Courtesy of DPA)

Capture pilot plant in Schwarze Pumpe

(70 Mio. € cost, 30 MW-facility, production of 10.650 t CO₂, 99.7%)

Oxyfuel combustion technique safe and reliable, but termination in July 2014

Cooperation with SaskPower, SK, Canada

1.510 t liquid CO_2 to the Ketzin storage site / 10 t to algae production, rest to vent

CAPTURE

CCS Demo-power plant Jänschwalde, developed by Vattenfall since 2008, (1.5 billion € cost, 300 MW, 1.7 Mt CO2/year)

Cancellation in Dec. 2011, also stop of further storage exploration in Brandenburg

Reason: unclear situation with the German CO₂ storage law (KSpG), temporal constraints of EU funding

Current CCUS status in UK

Leading role in Europe's CCS research by strong organisations:

- British Gelogical Survey (BGS) → recognised as a European centre of excellence for the study of CCS, and contributing to the Intergovernmental Panel on Climate Change (IPCC) special report.
- UKCCS Research Centre \rightarrow leads and coordinates a programme of supporting research on all aspects of CCS
- GeoEnergy Research Centre (GERC) → acts as an independent, collaborative institution co-founded by BGS and the University of Nottingham.
- Scottish Carbon Capture & Storage (SCCS) → UK's largest CCS research group, partnership between the British Geological Survey, Heriot-Watt University, the University of Edinburgh and the University of Aberdeen, with researchers engaged in projects and joint industry projects across the full CCS chain

Break in progress: in November 2015, the UK government announced the cancellation of the UK £1bn CCS Competition programme \rightarrow Two commercial scale projects are strongly affected:

White Rose consortium

(North Yorkshire) new coal plant with CCS technology (Photo: dailymail UK/Alamy)

Peterhead (Aberdeenshire) Shell's scheme to fit CCS to an existing gas plant (Photo: Shell)

Current progress:

Teesside Collective → cluster of leading industries with the shared vision to establish Tees Valley as the go-to location for future clean industrial development by creating the UK's first Carbon Capture and Storage (CCS) equipped industrial zone (http://www.teessidecollective.co.uk/)

Current CCUS status in the Netherlands

ROAD (Rotterdam Opslag en Afvang Demonstratieproject) 2009 - today

- Longstanding project for demonstrating the technical and economic feasibility of a large-scale, integrated CCS chain deployed on power generation
- Post-combustion capture of ~ 1.1 million tonnes of CO₂ per year from the flue gases of Maasvlakte Power Plant 3 (MPP3)
- Pipelining and off-shore storage in a depleted gas field in the North Sea

Significantly delayed by several reasons:

- Challenging funding gaps
- storage permit delay by implementation of CCS Directive
- dominating political problems (Dutch Parliament votes for a phase-out of coal plants)
- Yet, the project undergoes a remobilization and its operation is expected by the beginning of 2020.

Related Greenhouse applications

OCAP – Netherlands (owned by Linde Benelux since 2013) supplies pure CO_2 to greenhouse businesses in the Netherlands. CO_2 from two sources (a) by-product of the hydrogen production process at the Shell Pernis oil refinery, and (b) by-product from bio-ethanol production facility in Rotterdam

 CO_2 demand for greenhouse use is seasonal: highest demand in summer (April – September) and lowest during winter, when most of the CO_2 from the source facilities is emitted \rightarrow need for buffer storage! (Source: www.ocap.nl)

(Photo: E.ON)

Current CCUS status in Norway

Sleipner

GFZ

Helmholtz Centre

- Operator: Statoil, since Sep 1996
- About 0.8-1.0 million tonnes CO₂ per year stored in the Utsira sandstone
- Reservoir 1,000 m below the seafloor
- Gas produced from Sleipner West field: 15 % CO₂
- The introduction of CO₂ taxation on the offshore petroleum sector has triggered this project

Snøhvit

- Operator: Statoil, since April 2008
- About 0.7 million tonnes CO₂ per year have been safely injected and stored in the Tubåen sandstone
- Reservoir 2,600 m below the seafloor, about 45-75 m thick
- Maximum injection is planned for ~ 31-40 Mt

Current CCUS status in Norway

Norway is pioneering in the implementation of "full value chain" projects.

Capture: Gassnova has awarded contracts to Norcem AS (cement plant), Yara Norge AS (ammonia plant) and Klemetsrudanlegget AS (waste-to-energy-recovery plant) for further studies of full-scale carbon capture at their respective plants.

Transport: Gassco AS

Storage: In preparation; off-shore North Sea field Smeaheia under evaluation.

CLIMIT supports the CCS technologies of the future

CLIMIT is a programme for research, development and demonstration of CCS technologies. The programme is carried out in cooperation between the **Research Council** of Norway and Gassnova.

(Source: Ministry of Petroleum and Energy: Feasibility study for full-scale CCS in Norway)

CAGS Technical Workshop, 26 June 2017

Implementation of CCUS –Items of an European "To Do" list after more than 10 years working on pilots

- Implementation of CCS projects on **commercial scale**
 - *first-of-a-kind* projects with public co-funding
 - "learning by doing"
- Establishment of a **mature legal framework**, which supports CO₂ storage
 - adaptation/change of the German KSpG, EU Directive
 - transnational CO₂ transport, regional infrastructure
- Establishment of market mechanisms, which create an realistic CO₂ price (Emission Trade System – ETS), and make the system functioning
- Detailed assessment of **reliable storage capacities** (location/volume)
 - minimizing of exploration risk
 - estimation of potential for CCS-Cluster/-Hub solutions
- Additional pilot- und demonstration sites
 - public acceptance

GFZ

Helmholtz Centre Potsdam

- conducting focused research projects
- (ideally with potential for upscaling towards commercial size)
- Instead of simple "source sink" systems, R&D investment into cluster solutions, integration into future energy systems, "subsurface spatial planning"

THEN T

Summary

10 m (d)

any from the high cosists well

De-link CCS from the coal-power plants

10 X 10 K 100

- Start new from the high societal-value industries: steel, waste, cement, fertilizer
- Point out the chance of creating and saving new employment chances in these areas
- Willingness in development of a national CO₂ transport
 & storage structure

OIL AND GAS

 Invest into the future on regional-national level (There is Norway now!)

http://future.climit.no/en

CAGS Technical Workshop, 26 June 2017

H₂0

GFZ

Helmholtz Centre Potsdam