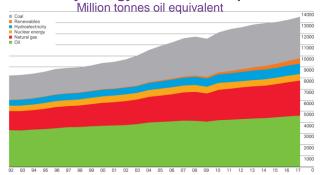
CAGS Symposium, 26 June 2018, Perth

Future of CCUS in China

ZHANG Jiutian, Ph.D

Executive Director, Professor

Green Development Institute, Beijing Normal University

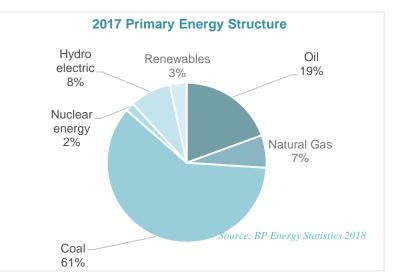


I. Basic status and trends of energy and emissions

1. World energy consumption is still increasing.

- Primary energy consumption growth averaged 2.2% in 2017, up from 1.2% last year and the fastest since 2013.
- Carbon emissions from energy consumption increased by 1.6%, after little or no growth for the three years from 2014 to 2016.


Primary energy world consumption



2. China Energy structure

- Primary energy
 - 2015, non-fossil energy 12%, coal 64.5%
 - 2017, non-fossil energy 13%, coal 61%
- End use
 - Industry sectors and power are major users and emission sources
 - Transportation & building
 - accounts for 2/3 emissions in developed countries,
 - will increase in China in the future.

3. China Energy – Electric Vehicle

• EV grows very fast now in China

• EV will be important part of future energy system, from both supply and consumption side.

New Energy Vehicles

EV+RE+Energy Storage

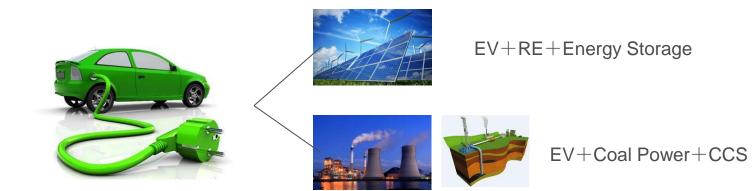
4. Emission Management

• CO2 Emission Peak

- Around 2030, try best to reach earlier.
- Coal capping as earlier as possible
- Non-fossil energy could fill the new demand after 2020
- Enhance the share of electricity, natural gas in energy end use

Carbon Market

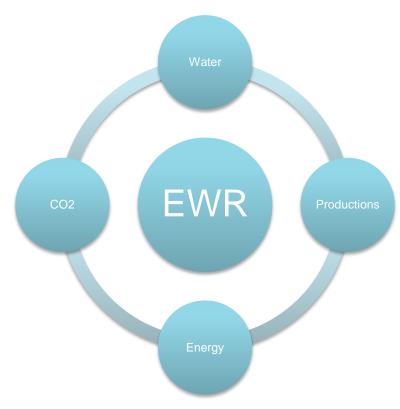
- Launched in Dec. 2017, Power industry included.
- 6-7MW Power station will be included in,
- 1700+ Power stations with 3 billion tons CO2 emission be covered.
- Efficiency enhancement and/or structure change of power source
- a potential tool for CCUS take off.



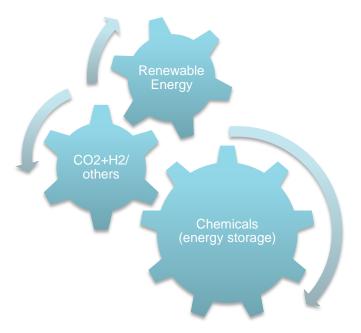
The Future of CCUS, depends on:

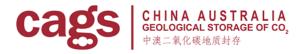
- How we define CCUS and its role?
- How could CCUS be integrated into the future energy system?

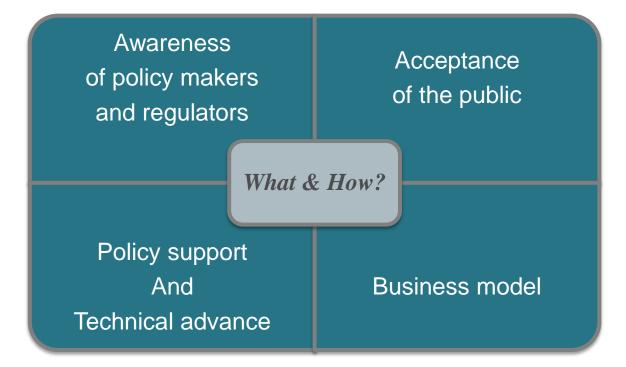
1. CCUS vs Renewables


- Competing with renewables?
- Transitional option to a future RE world?

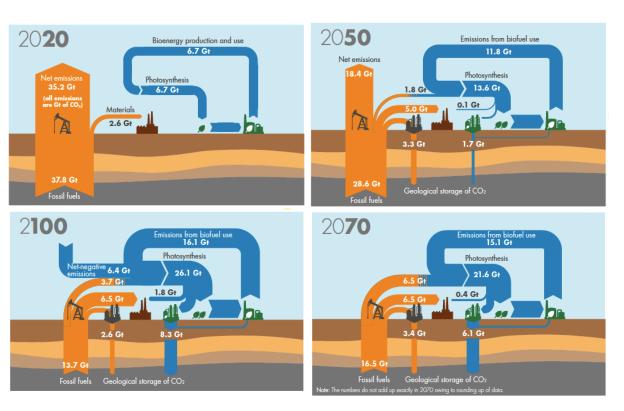
2. CO2 mitigation and MORE

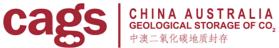

- Beyond CO2 mitigation, there are many other goals
- Utilization
- Solve regional challenges
 - 80% coal reserves identified located in the West, while lack of water




3. Integration to the future energy system


- further increase the techno-economic performance of CCUS
- integrate CCUS into the future energy system, not only acts in end-pipe field.
 - Manufacturing synthetic hydrocarbon fuels, displace the need for fossil hydrocarbons.
 - Manufacture of certain goods e.g. building materials or plastics.




4. Non-technical environment

- U
- U+S
 - FeCCS
 - BeCCS

Source: Shell, meeting the goals of Paris Agreement

Conclusions

- CCUS is important, however future CCUS is what we want CCUS to be.
- Infusing innovative CCUS to future energy system.
- Capacity building is always crucial, especially in find an echo in the role of CCUS.
 - relations with Renewables,
 - safety issues, and
 - CO2 mitigation + other sustainable effects
- Storage and utilization are fundamental, which give outlet of CO2. Innovative and systematic approaches are key to the future deployment.
- Past pratices, infrastructure and collaborations need to be INTEGRATED
- Enhanced CAGS+ is highly recommended.

Thank You for Your Attention!

ZHANG Jiutian, Ph.D

Executive Director, Professor

Green Development Institute,

Beijing Normal University

zhangjiutian@hotmail.com, zhangjiutian@bnu.edu.cn