# CO<sub>2</sub> sequestration in saline aquifers in China

### **PANG Zhonghe**

Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 CHINA z.pang@mail.iggcas.ac.cn



# Outline

- What's CO<sub>2</sub> Geological Sequestration ?
- Overview of CO<sub>2</sub> sequestration in China
- Case study—Bohai Bay Basin (BBB), China
- Future work: saline aquifer science



## What's CO<sub>2</sub> Geological Sequestration ?



Overview of  $CO_2$  saline aquifer sequestration in China

- Scientific research and field test on CO<sub>2</sub> geological sequestration
- CO<sub>2</sub> Geological Sequestration Atlas
- Projects of CO<sub>2</sub> sequestration in deep saline aquifers
- CO<sub>2</sub> Capture, Utilization and Sequestration (CCUS)



### Scientific research on CO<sub>2</sub> geological sequestration

C-14 sampling at a test well





### Natural analogue study ---CO<sub>2</sub> gas field

第 53卷 第 1期 Vol 53 No 1 魮 质 论 评 GEOLOGICAL REVIEW 2007年1月 2007 Jan Characteristics and geological significance sandstone with dawsonite 含片钠铝石砂岩的基本特征及地质意义 Lithification of Dawsonite-Bearing Sandstone in the Qingshankou Formation in the Qian'an Oil Field of the South Songliao Basin LI Fu-lai<sup>1</sup>, LIU Li<sup>1</sup>, YANG Hui-dong<sup>1,2</sup>, QU Xi-yu<sup>1</sup>, LIU Na<sup>1</sup>, ZHAO Guo-xiang<sup>1</sup> Characteristics and Stability Analysis of Dawsonite in Sandstone

QU Xiyu<sup>1)</sup> ,LIU  $Li^{1)}$  ,GAO Yuqiao<sup>2)</sup> ,LIU  $Na^{1)}$  ,PEN G Xiaolei<sup>1)</sup>

1) College of Earth Sciences, Jilin University, Changchun, 130061;

2) State Key Laboratory for Mineral Deposit Research, Department of Earth Sciences, Nanjing University, Nanjing, 210093

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

### CO<sub>2</sub> sequestration numerical simulation



China Australia Geological Storage of CO2

中澳二氧化碳地质封存

### CO<sub>2</sub> sequestration numerical simulation





### **CO<sub>2</sub> Geological Sequestration Atlas**

The National CO2 Storage Capacity and Suitability Assessment Project which is in charged by the Institute of Hydrogeology and Engineering Geology Techniques, Chinese Geological Survey is implemented since 2010.

► National CO2 storage capacity and suitability assessment and mapping (1:5,000,000)

Candidate sedimentary basins for CO2 sequestration assessment and mapping (1:1,000,000);

Demonstration project of CO2 sequestration in deep saline formation in Ordos basin







18. 825 BB. 48. 48 198. 928. 928. 608. 107

RAME REEFTINGT, DUTABLE IN S BAASLEADER.



### Projects of CO<sub>2</sub> sequestration in deep saline aquifers





### CO<sub>2</sub> Capture, Utilization and Sequestration (CCUS) progress

CO2-EOR ( e.g. Songliao basin)

CO2-ECBM (e.g. Qinshui basin)

➤CO2 capture progresses in Clean Coal Technology (HuaNeng) and Transformation from coal to oil technology (ShenHua )



### CO<sub>2</sub> capture progresses (HuaNeng)



Greengen group Ltd.: IGCC Power Plant 2011-2016, 250MW



### IGCC conceptual model



### CO<sub>2</sub> Capture technology (ShenHua)



## Case study – Guantao saline aquifer in Bohai Bay Basin (BBB), China



### Site Location of the BBB



### Cross section map of the BBB





# CO<sub>2</sub> storage capacity assessment of deep saline formation in the BBB



# The suitable reservoir formations of each depression

| Name of<br>Depression    | Target evaluation<br>formation                       | Remarks                       |  |  |
|--------------------------|------------------------------------------------------|-------------------------------|--|--|
| Liaohe                   | Ng, Es <sub>2</sub> , Es <sub>4</sub>                |                               |  |  |
| Liaodongwan<br>& Bozhong | Ng, Ed (the upper parts)                             | Evaluation depth ranging from |  |  |
| Jizhong                  | Ng, Ed                                               |                               |  |  |
| Huanghua                 | Ng,Es <sub>1</sub> ,Es <sub>2</sub>                  | 800m to 3500m                 |  |  |
| Jiyang&Changwei          | Ng,Ed <sub>1</sub> ,Es <sub>2</sub> ,Es <sub>3</sub> | subsurrace                    |  |  |
| Linqing                  | Ng,Es <sub>4</sub>                                   |                               |  |  |

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

# Guantao formation (Ng) is a excellent reservoir for $CO_2$ sequestration for its physical properties and regional distributions over the basin.



#### CO<sub>2</sub> storage capacity evaluation of the deep saline aquifer in BBB

| Depression name         | Solubility trapping<br>(Mt) | Residual trapping (Mt) | Total (Mt) |  |
|-------------------------|-----------------------------|------------------------|------------|--|
| Liaohe                  | 4991.68                     | 18.77                  | 5010.46    |  |
| Liaodongwan&<br>Bozhong | 42937.27                    | 200.33                 | 43137.60   |  |
| Jizhong                 | 19019.40                    | 649.31                 | 19668.71   |  |
| Huanghua                | 24354.06                    | 749.18                 | 25103.25   |  |
| Jiyang&Changwei         | 23152.05                    | 82.21                  | 23234.25   |  |
| Linqing                 | 33505.63                    | 82.21                  | 33587.84   |  |
| total                   | 147960.10                   | 1782.01                | 149742.11  |  |



Cag

# Suitability assessment of $CO_2$ sequestration in the BBB

> CO<sub>2</sub> emission sources

- ≻Resources using conflicts (oil & gas, geothermal resources)
- ► Regional crust stability and historical earthquake records
- >Properties of reservoirs and caprocks
- >CO<sub>2</sub> capacity of each depression









By consideration of factors, e.g. CO<sub>2</sub> emission sources, resources using conflicts (oil, natural gas and geothermal resources), historical earthquake records and regional crust stability,  $CO_2$  capacity and properties of reservoirs, some much more preferential zones for  $CO_2$  sequestration are figured out.

Map of preferential zone of CO<sub>2</sub> sequestration and corresponding capacity of each depression

# More in detail: Characterization of Guantao formation of Beitang sag, BBB





Location of test site in Beitang sag in the BBB and cross-section map

#### Hydrogeological parameters of the Injection well:

- Porosity: 22.75~36.05%;
- Permeability: 435.12  $\times$  10<sup>-3</sup>  $\sim$  1483.18  $\times$  10<sup>-3</sup>  $\mu$  m<sup>2</sup>
- Max. yield: 112.78m<sup>3</sup>/h
- Well head temperature: 57.5°C
- water type: CI·HCO3-Na
- •TDS:1693.1mg/L
- •pH:7.71

### Site characterization



Drilling cores sampling and Characterization of the reservoir (Ng) and caprock (Nm)

### Sequence stratigraphic studies



Sedimentary sequence and diagenesis of the reservoir rock are under studying to help evaluating porosity and permeability distribution of the reservoir

### Thin section analysis of the rocks



Caprock

**Reservoir rock** 

### Mineral composition of the rocks (XRD)



|             | Mineral composition % |        |            |         |               |          |                        |  |  |
|-------------|-----------------------|--------|------------|---------|---------------|----------|------------------------|--|--|
| Samples     | Quartz                | Albite | Microcline | Biotite | Chlorite      | Smectite | Others                 |  |  |
| Ng-1814m    | 55                    | 12     | 6          | 3       | 2             | _        | Hornblende 3           |  |  |
| Ng-1813.78m | 60                    | 13     | 10         | 3       | 2 +kaolinite  | trace    | -                      |  |  |
| Nm-1225m    | 30                    | 13     | 8          | 4       | 4+kaolinite 1 | trace    | Dolomite 16            |  |  |
| Nm-888m     | 45                    | 20     | 10         | 3       | 2+ kaolinite  | trace    | Calcite 15             |  |  |
| Nm-965m     | 40                    | 19     | 8          | 3       | 3+ kaolinite  | trace    | Dolomite 10+Calcite 13 |  |  |

#### Chemical composition of the rocks (XRF)

| composition | SiO2           | TiO2 | AI2O3 | Fe2O3 | MnO  | MgO  | CaO  | Na2O | K2O  | P2O5 | LOI   | TOTAL  | FeO  |
|-------------|----------------|------|-------|-------|------|------|------|------|------|------|-------|--------|------|
| samples     | (%)            | (%)  | (%)   | (%)   | (%)  | (%)  | (%)  | (%)  | (%)  | (%)  | (%)   | (%)    | (%)  |
| Ng-1814m    | 76.34          | 0.27 | 11.13 | 2.26  | 0.03 | 1.09 | 1.23 | 2.48 | 2.73 | 0.09 | 1.94  | 99.59  | 1.02 |
| Ng-1813.78m | 7 <b>6</b> .82 | 0.24 | 10.93 | 2.09  | 0.03 | 1.34 | 1.32 | 2.23 | 2.32 | 0.06 | 2.40  | 99.78  | 0.95 |
| Nm-1225m    | 55.08          | 0.67 | 13.55 | 5.21  | 0.08 | 5.48 | 4.99 | 1.58 | 2.68 | 0.12 | 10.52 | 99.96  | 2.42 |
| Nm-888m     | 65.43          | 0.60 | 13.85 | 3.83  | 0.31 | 1.12 | 4.04 | 2.06 | 3.05 | 0.13 | 5.62  | 100.04 | 0.31 |
| Nm-965m     | 65.03          | 0.57 | 13.21 | 4.42  | 0.06 | 2.07 | 4.06 | 2.14 | 3.04 | 0.17 | 5.23  | 100.00 | 0.64 |



### Geothermal water sampling



On site measurements: pH, EC,TDS, Eh, DO, Fe2+,Fe3+ 2H, 18O, 3H, 13C, 14C, 87Sr/86Sr Major ions, trace elements, SiO2

### Hydrochemical background of geothermal waters



Guantao formation (Ng) are typical of HCO3-Cl-Na type water
TDS: 0.7-15 g/L
Average pH 7.7

### CO<sub>2</sub>-water-rock interactions





Batch type autoclave (Parr 4575A)

Schematic diagram of the autoclave

#### Batch type reactor exploring into $CO_2$ -water-rock interactions Max. pressure 345bar; max. temperature 500°C; bomb volume: 500ml



### Preliminary results (200°C, 200bar, 15d)



| Mineral composition<br>(%) | Quartz | Microcline | Plagioclase | Smectite | Illite | Kaolinite | Chlorite | Clay<br>minerals |
|----------------------------|--------|------------|-------------|----------|--------|-----------|----------|------------------|
| Before reaction            | 61.6   | 11.2       | 20.5        | 4.8      | 1.3    | 0.4       | 0.3      | 6.7              |
| After reaction             | 63.3   | 8.8        | 20          | 6.1      | 1.2    | 0.4       | 0.2      | 7.9              |



SEM micrographs of microcline: (a) before reaction; (b) after reaction



# CO<sub>2</sub> solution: properties and transport at micro-scale and super-critical conditions





#### □ Magneto-suspension balance



### Cap-rock mechanics





#### 突破压试验装置



#### **D** Bursting pressure



## Future work: saline aquifer science

- Deep saline aquifers (DSA): a most promising option for CGS
- Concept: field tests can be onshore, but commercial scale deployment offshore
- Geochemical response of DSA to huge amount of CO<sub>2</sub> injection: future focus!!
- CCUS-Utilizing CO<sub>2</sub> while sequestrating
  - CO<sub>2</sub>-EOR
  - CO<sub>2</sub>-EATER (enhanced aquifer thermal energy recovery)



