

Safeguard CO2 Storage Site with Optical Satellite Remote Sensing

应用光学卫星遥感监测二氧化碳封存区的安全

Never Stand Still

School of Civil & Environmental Engineering

Dr. Linlin GE (葛林林) A/Professor Remote Sensing and Earth Observation 新南威尔士大学土木与环境工程学院 澳大利亚 悉尼 Email: I.ge@unsw.edu.au Web: www.gmat.unsw.edu.au/LinlinGe

Outline

- CCS introduction
 CO2捕集与封存简介
- CO2 storage site monitoring CO2 封存区监测技术
- Optical satellite monitoring natural CO2 leakage analogue 光学卫星监测自然CO2泄漏
- Optical satellite monitoring CO2 storage sites
 光学卫星监测自然CO2封存区
- Concluding remarks

CCS Process Chain (IEA, 2004)

• CO2捕集与封存过程

Overview of geological storage options (IPCC, 2005) 地质封存的途径

CO₂ storage operation across the world (CO2CRC, 2011) 全球CO2封存项目分布

Geologic storage life cycle (Schlumberger, 2008) 地质封存项目周期

Risk of CO2 leakage (IPCC, 2005) CO2泄漏的危害

CO2 monitoring and verification (BGS, 2009) CO2监测和核查-现有技术

Satellite Optical Remote Sensing 光学卫星遥感

Key techniques developed 关键技术研发 - UNSW Selected results

代表性结果

 Multispectral NDVI time series analysis

 Hyperspectral NDVI time series analysis

 多光谱植被指数时间序列 分析

 高光谱植被指数时间序列 分析 Principle - NDVI - Vegetation: distributed sensors 监测原理 - NDVI - "植被就是分布式CO2传感器"

- Normalized Difference Vegetation Index 归一化植被指数
- NDVI = (NIR VIS)/(NIR + VIS)

NIR = near-infrared light (0.76µm) 近红外
VIS = visible light (0.6µm) 可见光

- Close to +1 (e.g. 0.8 0.9) dense and healthy vegetation
- Close to 0 dead / no vegetation

Satellite Optical Remote Sensing 光学卫星遥感-高、中、低结合

Low (1,000m)

Medium (250m) Image resolution High (30m)

- The French Centre National d'Etudes Spatiales (CNES), in cooperation with Belgium and Sweden
- Two Vegetation instruments on SPOT satellites
 - Vegetation 1 on SPOT 4
 - Vegetation 2 on SPOT 5
- 10-day NDVI synthesis from SPOT Vegetation (CNES website, 2009)

10-day NDVI synthesis from SPOT vegetation (May 2009, CNES)

SPOT-VGT 4 & 5

Satellite	SPOT-VGT 4	SPOT-VGT 5							
Altitude	822 km	822 km							
Inclination	98.7 degrees	98.7 degrees							
Orbit	sun-synchronous polar	sun-synchronous polar							
Period of revolution	101 minutes	101 minutes							
Swath width	60 x 60 to 80 km	60 x 60 to 80 km							
Repeat cycle	1 day	1 day							
Band	B0, B2, B3 and MIR	B0, B2, B3 and MIR							
Spectral band	0.43 – 0.47µm (blue)	$0.43 - 0.47 \mu m$ (blue)							
	0.61 – 0.68 µm (red)	0.61 – 0.68 µm (red)							
	0.79 – 0.89 µm (near IR)	0.79 – 0.89 µm (near IR)							
	1.58 – 1.75 μm (mid-IR)	1.58 – 1.75 μm (mid-IR)							
Period	24/03/1998 - still	04/05/2002 - still							
	operational	operational							

- Onboard the Terra (EOS AM) and Aqua (EOS PM) satellites
- 36 spectral bands ranging in wavelength from 0.4μm to 14.4μm
- Resolution of 250m
- 8 and 16 day MODIS NDVI composite images

Landsat-5 Thematic Mapper (TM) Landsat-5 卫星参数

Parameters	Landsat-5 TM					
Altitude	705 km					
Orbit	Polar, sun synchronous					
Inclination	98.2 degrees					
Revisit cycle	16 days					
Resolution	30 meter (TM)					
Swath width	185 km					
Spectral band	Band 1 : 0.45 - 0.52 (blue) Band 2 : 0.52 - 0.60 (green)					
	Band 3 : 0.60 - 0.69 (red)					
	Band 4: $0.7/$ - 0.90 (near infrared)					
	Band $5: 1.55 - 1.75$ (shortwave infrared)					
	Band 6 : 10.40 - 12.50 (thermal infrared)					
	Band 7 : 2.08 - 2.35 (reflective infrared)					

Flowchart of GEOS-NDVI time-series analysis NDVI 时间序列分析流程图(UNSW-GEOS)

1	2	3	4	5		1	2	3	4	1	2	3	4	5	6	7	8
6	7	0	0							9	10	11	12	13	14	15	16
0	'	3	9	ru		5	6	7	8	17	18	19	20	21	22	23	24
11	12	13	14	15	1					25	26	27	28	29	30	31	32
		•				9	10	11	12	33	34	35	36	37	38	39	40
16	17	18	19	20						41	42	43	44	45	46	47	48
					-	13	14	15	16	49	50	51	52	53	54	55	56
21	22	23	24	25						57	58	59	60	61	62	63	64

- The consequences of CO2 eruptions from geologic reservoirs, such as volcanic and geothermal structures, can be devastating
- Lake Nyos, Cameroon
- Mammoth Mountain, California, USA

CO2 disaster at Lake Nyos, Cameroon, 21 August 1986 喀麦隆

A chain of volcanoes

火山群

Mammoth Mountain, California, USA 美国加利福尼亚猛犸山

Natural leakage model (USGS, 2004) vs CO2 storage leakage model (Damen et al., 2005)

• CO2泄漏解译模型

reservoir

brine

CO2

7

brine

Landsat 5 TM result

• 4th September 1988

5th September 1994

1st April 2010

CO2 concentration - USGS field survey 美国地质调查局实地调查

USGS tree kill maps at Mammoth mountain CA, USA

MODIS to Landsat

Mammoth Mountain NDVI time series result - Landsat

CCS sites

CO2封存监测试验区

- Australia 澳大利亚
 - Otway 奥特维
 - Iona 埃文娜
- China 中国
 - Ordos 鄂尔多斯
 - Liulin 柳林

CO2CRC Otway site

澳大利亚CO2封存区

Construction phase at Otway CO2CRC 施工阶段

Satellite Optical Remote Sensing 光学卫星遥感

Low (1,000m)

Medium (250m) Image resolution High (30m)

SPOT VGT 10-year NDVI time-series plot 十年期NDVI时间序列

Pixel No. 13: 10-year NDVI time series and annual growth model NDVI时间序列及年生长模型

△NDVI time series plot for pixel No.13 差分NDVI时间序列

Annually Rainfall data and model for Victoria 年降雨数据及模型

Rainfall differential result

Temperature 年温度数据及模型

Satellite Optical Remote Sensing 光学卫星遥感

Otway CO2CRC Landsat 5 TM

Satellite Optical Remote Sensing 光学卫星遥感

Landsat time series analysis for ANDVI around the CO2 Injection well

Vegetation Stress: Otway (2003-2012)

Concluding remarks

- Potential CO2 leakage has to be carefully monitored
 我们应该密切监测封存区潜在的CO2泄漏
- Wherever possible, vegetation can be used as "distributed sensors" of CO2

封存区的地表植被能巧妙地用作分布式CO2传感器

- Vegetation dynamics needs to be thoroughly understood with multi-year optical satellite remote sensing data
 必须使用多年期光学卫星遥感数据弄清植被动态特征
- Integration of optical satellites of low, medium and high resolution can be used to detect vegetation stress due to CO2 contamination

高、中、低分辨率光学卫星的结合能用NDVI有效检测CO2泄漏

Acknowledgement

致谢

- DRET / JCG
- 澳大利亚资源、能源及旅游部 中澳清洁煤协调小组
- Australian Research Council
- 澳大利亚研究基金会会
- Cooperative Research Centre program
- 澳大利亚合作研究中心计划
- Geoscience Australia
- 澳大利亚地球科学组织

UNSW THE UNIVERSITY OF NEW SOUTH WALES

- Li, X., L. Ge, Z. Hu, R. Cholathat, 2012. Establishing baseline information on an enhanced coal bed methane site with SPOT VGT-S10 and ALOS PALSAR for safety monitoring, *IEEE International Geoscience and Remote Sensing Symposium* (IGARSS 2012), Munich, Germany, 22-27 July.
- Cholathat, R., Ge, L., Li, X., and Hu, Z., 2012: Feasibility to detect signs of potential CO2 leakage with multi-temporal SPOT satellite vegetation imagery in Otway, Victoria, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., I-7, 209-213, doi:10.5194/isprsannals-I-7-209-2012.
- Cholathat, R., X. Li, & L. Ge, 2011. Monitoring natural analog of geologic carbon sequestration using multi-temporal Landsat TM images in Mammoth Mountain, Long Valley Caldera, California, IEEE International Geoscience & Remote Sensing Symposium (IGARSS), Vancouver, Canada, 24-29 July.
- Cholathat, R., X. Li, L. Ge, H.T. Chu, 2010. Hyperspectral remote sensing for geologic carbon sequestration field monitoring. 31st Asian Conf. on Remote Sensing, Hanoi, Vietnam, 1-5 November, paper TS31-5, CD-ROM procs.

