Monitoring and impact assessment of CO<sub>2</sub> seabed sequestration in China

**Zhendong Zhang** 

**National Marine Environmental Monitoring Center** 

Summer School of CAGS in Sanya

Aug 21st - 25th 2011

# Outline

Potential impact of CO<sub>2</sub> seabed sequestration
Feasibility of CO<sub>2</sub> seabed sequestration in China
Case study- impact of CO<sub>2</sub> leakage
Risk control and management

#### CCS is regarded as a key technology for the reduction

#### of CO<sub>2</sub> emissions at international level.

| 项目名称     | 国家    | 开始时间 | 注入量(t∙d⁻¹) | 封存总量(t)  | 封存地类型  |
|----------|-------|------|------------|----------|--------|
| Sleipner | 挪威    | 1996 | 3000       | 20000000 | 咸水层    |
| weybrun  | 加拿大   | 2000 | 3000~5000  | 2000000  | EOR    |
| In Salah | 阿尔及利亚 | 2004 | 3000~4000  | 17000000 | 天然气田   |
| K12B     | 荷兰    | 2004 | 100        | 8000000  | 增强气体回收 |
| Frio     | 美国    | 2004 | 177        | 1600     | 咸水层    |
| Fenn大山谷  | 加拿大   | 1998 | 50         | 200      | ECBM   |
| Recopol  | 波兰    | 2003 | 1          | 10       | ECBM   |
| Yubari   | 日本    | 2004 | 10         | 200      | ECBM   |
| Gorgon   | 澳大利亚  | 2009 | 10000      | -        | 咸水层    |
| Snøhvit  | 挪威    | 2006 | 2000       | -        | 咸水层    |
| 沁水流域     | 中国    | 2003 | 30         | 150      | ECBM   |
| 鄂尔多斯     | 中国    | 2010 | -          | 100000/年 | 咸水层    |

However, little is known about the short-term and long-term impacts of  $CO_2$  storage on marine ecosystems even though  $CO_2$  has been stored sub-seabed in the North Sea (Sleipner) for over 15 years and for 3 years in the Barents Sea (Snhvit).



London Protocol and the OSPAR Commission demand inter alia offshore CCS should be a permanent storage. Risks have to be avoided and substances added to the  $CO_2$  stream should be minimized.

It was clear that the basic risks of offshore CCS to the marine environment are associated with potential leakages.  $CO_2$  as well as substances added to the  $CO_2$  stream and substances mobilized by the  $CO_2$  stream from the surrounding material must be considered.

## **Impacts of CO<sub>2</sub> leakage on marine ecosystems**



Contents lists available at ScienceDirect

#### Estuarine, Coastal and Shelf Science

journal homepage: www.elsevier.com/locate/ecss



#### and

res Assessment of pH variability at a coastal CO<sub>2</sub> vent for ocean acidification studies

Philip Kerrison<sup>a</sup>, Jason M. Hall-Spencer<sup>b</sup>, David J. Suggett<sup>a</sup>, Leanne J. Hepburn<sup>a</sup>, Michael Steinke<sup>a,\*</sup>

<sup>a</sup> University of Essex, Department of Biological Sciences, Wivenhoe Park, Colchester CO4 35Q, LW <sup>b</sup> Marine Institute, Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth PL4 8AA, UK

#### A unique natural laboratory



#### leakage rate are acceptable ?

The maximum permissible leakage flux from submarine storage should be defined as less than 10 % of the normal flux rates which generally corresponds to a rate smaller than 10 t of  $CO_2$  per km<sup>2</sup> per year (Prof. Klaus Wallmann).



### **ECO<sub>2</sub>—EU project led by IFM-GEOMAR**

4 year €10.5 Mio.

**Objective** :

The ECO<sub>2</sub> project sets out to assess the risks associated

with the storage of  $CO_2$  below the seabed.





#### **3 study sites :**

- Sleipner (90 m water depth)
- Snøhvit (330 m water depth)
- the B3 field in the Polish Baltic Sea (80 m water depth)

#### Focus on :

- whether or not gas is being released at these sites
- how it could be transported through the different strata
- which reactions are involved.

#### 🙂 To evaluate

- $\checkmark$  the likelihood of leakage,
- $\checkmark$  the possible impacts on marine ecosystems,
- $\checkmark$  the potential economic and legal consequences of leakage

#### **3 THE GOAL**

To provide not only a comprehensive risk assessment but also guidelines for monitoring and a best environmental practice guide for preparation and management of storage sites. The first expeditions have already been conducted during spring and summer 2011 to monitor the seafloor and evaluate the safety of the storage sites located in the North Sea and Barents Sea.



## Research projects

| Time      | Research projects                                      |
|-----------|--------------------------------------------------------|
| 2006      | 温室气体地下埋存及提高石油采收率的资源化利用                                 |
| 2007      | 吉林油田含CO <sub>2</sub> 天然气开发和CO <sub>2</sub> 埋存及资源综合利用研究 |
| 2007      | 中欧碳捕获与封存合作行动(COACH)                                    |
| 2008      | CO <sub>2</sub> 的捕集与封存技术                               |
| 2008      | 中国CO <sub>2</sub> 海底封存能力评估与风险控制技术预研究                   |
| 2010      | 中澳CO <sub>2</sub> 地质封存合作项目                             |
| 2010      | 广东省CO <sub>2</sub> 捕集与封存可行性研究                          |
| Salar and |                                                        |

#### CCS project in Chinese large-scale power plant

| 企业           | 启动或投产时间    | 项目简介                                                                                    |
|--------------|------------|-----------------------------------------------------------------------------------------|
| 华能北京热电厂      | 2008年7月投产  | 国内首座燃煤电厂燃烧后CO₂捕集示范工程,CO₂捕<br>集量3000 t∙a⁻¹                                               |
| 华能上海石洞口第二电厂  | 2009年12月投产 | 目前世界最大的燃烧后CO <sub>2</sub> 捕集示范工程,捕集和提<br>纯12万t•a <sup>-1</sup> ,成本仅为美国同类工程的30%。         |
| 华能天津IGCC示范电站 | 2009年启动    | 整体煤气化联合循环发电系统(IGCC),是目前世<br>界上最环保的高效发电、低排放燃煤发电技术,首<br>期250 MW将于2011年前建成                 |
| 中电投重庆双槐电厂    | 2010年投产    | 燃烧后捕集装置,自主技术,捕集和提纯1万t∙a⁻¹。                                                              |
| 中国石油吉林油田     | 2006年启动    | CO <sub>2</sub> 高效捕集、安全埋存和驱油试验,至2009年9月<br>已注入CO <sub>2</sub> 7万t,预测提高采收率14%            |
| 中国神华集团       | 2010年7月启动  | 我国首个全程CCS示范项目,包括捕集和注入咸水<br>层封存。封存量10万t•a <sup>-1</sup> 。将分两步建成年捕集与<br>封存100万t、300万t的项目。 |

marine environment monitoring in China

#### **Monitoring stations**

Environmental elements Ecological elements

Methods and instruments is more and more mature and advanced.  $CO_2$  concentrations in the atmosphere and ocean are essential for monitoring changes in carbon sinks and climate.

> Monitoring of  $CO_2$  switching throughput is in full operation in 2009.

Biological and physical pumps of carbon dioxide



A three dimensional, real-time air-sea carbon dioxide monitoring system has preliminarily formed.

- About 20 shipborne underway monitoring sections have been deployed, and 5 shore-based stations and 5 buoy stations are being under construction.
- 6 monitoring sections in the Bohai Sea;
- 5 monitoring sections in the west of the North Yellow Sea
- 5 monitoring sections in the East China Sea
- 4 monitoring sections in the South China Sea

Improving of marine environment monitoring technology and means

#### satellite, plane, ship, buoy; Remote

#### sensing, On-line monitoring



#### Assessment of $CO_2$ sequestration capacity of seabed in China and pre-study of risk control technology

✓ Focus on the potential
 capacity of geological storage of
 CO₂ in the Bohai Sea and South
 China Sea especially.

✓ Assessment of the ecological sensitivity / vulnerability



# Ecologically Sensitive Areas to CO<sub>2</sub>seabed sequestration

- Spawning, nursery and feeding grounds;
- Marine protected areas;
- Special marine protected areas ;
- Fishery areas such as marine fish, shrimp,
   shellfish and algae farms;

# Sensitive species to CO<sub>2</sub> leakage







Possible ecological impacts could be categorized into acute and chronic.

 Acute impact such as mortality of marine organisms could be determined by lab and field experiments and assessed by simulation models.

Chronic impacts, such as sub-lethal effects (metabolic suppression, reduced protein synthesis, respiratory stress) would be difficult to verify by the same approach as for acute impacts.





# Acute impacts-copepod

|                  |    |      | confidence interval |
|------------------|----|------|---------------------|
|                  |    |      |                     |
| Calanus sinicus  | 24 | 6.15 | 6.23-6.06           |
|                  | 48 | 6.40 | 6.48-6.32           |
| Acartia pacifica | 24 | 6.43 | 6.55-6.31           |
| Steuer           | 48 | 6.62 | 6.75-6.49           |
| Tigriopus        | 24 | 5.85 | 5.98-5.73           |
| japonicus        | 48 | 5.93 | 6.05-5.80           |

## Chronic impacts - *Corallina pilulifera*



#### microorganism

In deep-sea layers, bacteria are dominant organisms and play significant roles in oceanic carbon cycling.



#### DGGE

The microbial population dynamics could be monitored by DGGE technique.

## Suggested monitoring indicators

- ▶ pH
- pCO<sub>2</sub>
- saturation ratio of aragonite
- Trace metal
- Sensitive species:

carbonate skeleton molluscs, foraminifer calcified algae, microorganism population...

### Risk control and risk management

The main research topic in risks associated with underground  $CO_2$  sequestration is leakage.



 $\updownarrow$  Insight in the risks associated with underground CO<sub>2</sub> sequestration is a key factor affecting public acceptance.

☆ Understanding those risks is indispensable to facilitate the formulation of standards and a regulatory framework required of large-scale application of CCS. Before sequestration, careful and sufficient investigation must be conducted for ecological and environmental assessments.

Evaluation of the direct impact of the increased CO<sub>2</sub> and decreased pH on marine material cycling, individual organisms and ecosystems

Accumulating base-line information through a field survey of biomass, biodiversity and the trophic structure in order to evaluate induced ecosystem alterations.

## Monitoring of $CO_2$ seabed sequestration

- Therefore practical implementation of  $CO_2$  seabed sequestration must, as a precautionary measure, employ monitoring programs for its ecological impacts.
- The monitoring programs should be designed for both acute and chronic impacts. Those for the acute impacts will be restricted to areas near CO<sub>2</sub>-injection site and need to be conducted at frequent intervals, whereas those for chronic impacts will be extended over much larger areas

## Monitoring of CO<sub>2</sub> seabed sequestration



# Thank You !

