# Simulation of CO<sub>2</sub>-ECBM and Influences on Coal Structure of CO<sub>2</sub> Storage CO<sub>2</sub>—ECBM模拟及CO<sub>2</sub>储存对煤结构影响

Lai Zhou (周 来) Run Chen(陈 润)

Jiangsu Key CCS Laboratory(CUMT) 江苏煤基CO2捕集与地质储存重点实验室(中国矿业大 学)



## Outline



# Modeling and Numerical simulation of CO<sub>2</sub>-ECBM







### **1. CO<sub>2</sub> Storage and ECBM**



#### CBM exploration & mining



# CO<sub>2</sub> ECBM/ CCS

Injection of  $CO_2$  into deep coal seams is one of the potential approaches for enhancing coalbed methane (CBM) Recovery and  $CO_2$  storage. The feasibility of this technology has been investigated in China since the 1990s







(Yanfeng Liu, 2005)

✓ About 98% of CO<sub>2</sub>-ECBM is allocated in northern part of China.
 ✓ CO<sub>2</sub> Storage in unmineable coal seams of Ordos, Turpan-Hami and Junggar basins accounts for 65.49% of national storage.



## Outline



# Modeling and Numerical simulation of CO<sub>2</sub>-ECBM







#### 2. Modeling and Numerical simulation of CO<sub>2</sub>-ECBM

#### **Coupled Multiphysics of CO<sub>2</sub> ECBM**



Gas transport and storage in the coal

- Flow through the cleat network
- Diffusion through the micropores

China Australia Geological Storage of CO<sub>2</sub>

中澳二氧化碳地质封存

## **Key Scientific Issues for CO<sub>2</sub>-ECBM**

- Gas sorption strain Vs. Effective stress strain
- CO<sub>2</sub> sorption Vs.
   CH<sub>4</sub> sorption
- Binary gas sorption induced differential swelling





#### Experimental Evidence of Gas Competitive Adsorption







### **Differential Swelling**

 $CO_2$  causes more swelling of coal matrix in response to  $CO_2$  displacing  $CH_4$ 

The volumetric strain from  $CO_2$  sorption is at least 1.5 times than from  $CH_4$  (Chikatamarla, et al, 2004).



#### Effective stress causing cleat aperture increase



## Modeling of CO<sub>2</sub> ECBM

### Governing Equations



### **Assumptions**

- 1 Coal is homogeneous, isotropic and elastic continuum, and the system is isothermal.
- 2 Strains are much smaller than the length scale.
- ③ Gas contained within the pores is ideal, and its viscosity is constant under isothermal conditions.

④ Gas flow through the coal matrix is assumed to be viscous flow obeying Darcy's law (water phase is not included in the model).

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Isothermal adsorption ----Extended Langmuir Equation:

$$V_i = \frac{V_{Li}b_iP_i}{1 + \sum b_iP_i}$$

Adsorption-induced strain/pressure relationships fits with Langmuir like equation:

$$\varepsilon_{s} = \varepsilon_{L} \frac{p}{P_{\varepsilon L} + p} \quad \varepsilon_{s} = \sum_{i=1}^{2} \varepsilon_{i} = \sum_{i=1}^{2} \varepsilon_{Li} \frac{RTb_{i}C_{i}}{1 + \sum_{j=1}^{2} RTb_{j}C_{j}}$$

(Harpalani and Schraufnagel, 1990; Cui and Bustin, 2005)





 Binary gas diffusion and convection (Mass Balance Equation)

$$\frac{\partial m}{\partial t} + \nabla \cdot (\rho_g \cdot q_g) = \nabla \cdot (D \cdot \phi \nabla C_f) + Q_s$$

$$\mathbf{CO_2} \quad M_1 C_1 \frac{\alpha - \phi}{1 + S} \left[ \frac{\partial \varepsilon_v}{\partial t} + \frac{RT}{K_s} \left( \frac{\partial C_1}{\partial t} + \frac{\partial C_2}{\partial t} \right) - \frac{\partial \varepsilon_s}{\partial t} \right] + \phi \cdot M_1 \frac{\partial C_1}{\partial t} + \rho_c M_1 \frac{\partial V_1}{\partial t} + \nabla \left[ \frac{\partial V_1}{\partial t} + \nabla \left( \frac{kRT}{\mu} \nabla C_1 \right) \right] + \nabla \left[ -D\phi \cdot \nabla \left( M_1 C_1 \right) \right] = 0$$

$$\mathbf{CH}_{\mathbf{4}} M_{2}C_{2} \frac{\alpha - \phi}{1 + S} \left[ \frac{\partial \varepsilon_{v}}{\partial t} + \frac{RT}{K_{s}} \left( \frac{\partial C_{1}}{\partial t} + \frac{\partial C_{2}}{\partial t} \right) - \frac{\partial \varepsilon_{s}}{\partial t} \right] + \phi \cdot M_{2} \frac{\partial C_{2}}{\partial t} + \rho_{c}M_{2} \frac{\partial V_{2}}{\partial t} + \nabla \left[ V_{2}C_{2} \cdot \left( -\frac{kRT}{\mu} \nabla C_{1} \right) \right] + \nabla \left[ -D\phi \cdot \nabla (M_{2}C_{2}) \right] = 0$$

China Australia Geological Storage of CO2

Ge

中澳二氧化碳地质封存

#### Validation and Verification of Modeling



Experiments provided by Mazumder et al, 2007

•Sample was 334mm long and 69.50mm in diameter

Pore pressure was 4.3MPa

•The difference between the annular pressure and the pore pressure was 3.61MPa

 $\bullet$ CO<sub>2</sub> was injected from the left side and flowed out from the right side.

The injection rate is 6.0ml/h.







### CO<sub>2</sub>-ECBM Technology Pilot test at Well TL-003, Zhaoyuan, Jincheng Jointly made by China CBM Corp. & Alberta Research Council 120 tons of CO<sub>2</sub> Injection

#### Modeling of Pilot test in Jincheng Coal Gas Reservoir

221.10/11

PW-2

37.35m PW-1

13.631m

IW

PW-3

82.942m

Area

Simulation

354.867m

PW-4

278.67m



#### Finite Element Model



#### CO<sub>2</sub> Sweeping CH<sub>4</sub>



Binary gas component exchange

#### Change of coal seam permeability





After six months of injection, the CBM production is dramatically enhanced.
CO<sub>2</sub>-ECBM helps to extract 1.44 times more methane than the primary production

•1.75 $\times$ 10<sup>4</sup>t of CO<sub>2</sub> is sequestrated in the 300\*300 m<sup>2</sup> area within 10 years

(0)

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

## Outline



# Modeling and Numerical simulation of CO2-ECBM







# **Sketch of Reactor**



# Cumulative pore volume of different rank coal (mercury injection)





#### **Permeability changed during the process**

- Firstly, decrease in the initial stage;
- Secondly, briefly stability ;
- Thirdly, increase in the middle stage;
- Lastly, stability



## Outline



# Modeling and Numerical simulation of CO<sub>2</sub>-ECBM







# **4 Conclusions and Puzzled**

#### Conclusions:

- A fully coupled coal deformation, gas transport and gas adsorption/desorption finite element (FE) model is introduced to achieve a better understanding of gas-coal interactions, implications for ECBM and CO2 sequestration in coal seams.
- COMSOL FE simulator is extended to simulate the CO2 injection performance in Qinshui Basin under field scale and conditions, to address in-situ spatial-temporal binary gas composition exchange and evolutions of coal permeability.
- CO2 storage in coal seam can improving the coal structure and influencing Permeability.

#### Puzzled:

• Which is more important to Permeability changed, adsorption swelling or reaction between H<sub>2</sub>O-CO<sub>2</sub> and minerals?





# Thank you for your attentions!

