

Coupled Thermal-Hydrodynamic-Mechanical -Chemical (THMC) Processes in CO₂ Geological Storage 地质封存的热-流-力-化耦合过程

Xiaochun Li

(xcli@whrsm.ac.cn)

Institute of Rock and Soil mechanics Chinese Academy of Sciences

Outlines

- **D** Background
- □ Interactions between THMC processes
- **D** Individual processes
- **Coupled processes**
- **Conclusions and recommendations**

Background

CO₂ Geological utilization and storage (CGUS)

•EOR驱油
•ECBM驱煤层气
•EGR驱天然气
•ESGR驱页岩气
•EGS强化采热
•EUL溶浸采铀
•EWR驱水

Common scientific issue? 共同的基础科学问题

Background

- Large scale: tens of millions ton of CO₂ injected at single site, area of about 1000km² involved
- Long term: hundreds of years
- Multi-physical coupling: T-H-M-C coupling

Aims: Current understanding, theory framework

Outlines

- □ Background
- □ Interactions between THMC processes
- **D** Individual processes
- **Coupled processes**
- **Conclusions and recommendations**

Outlines

- □ Background
- □ Interactions between THMC processes
- □ Individual processes
- Coupled processes
- **Conclusions and recommendations**

Individual process-Hydrodynamic process

Multiphase and multicomponent

CO₂, H₂O, NaCl Aqueous, gaseous

Darcy's law for Multiphase flow

Mass conservation

$$\frac{d}{dt}\int_{V_n} M^{\kappa} dV = \int_{\Gamma_n} \mathbf{F}^{\kappa} \bullet \mathbf{n} d\Gamma + \int_{V_n} q^{\kappa} dV$$

$$M^{\kappa} = \sum_{\beta=A,G} \phi S_{\beta} \rho_{\beta} X_{\beta}^{\kappa}, \quad \kappa = w, i, g$$

$$\mathbf{F}_{\beta}^{\kappa} = -\frac{k \frac{k_{r\beta} \rho_{\beta}}{\mu_{\beta}} X_{\beta}^{\kappa} (\nabla P_{\beta} - \rho_{\beta} \mathbf{g}) + \mathbf{J}_{\beta}^{\kappa}, \quad \kappa = w, i, g$$

$$\sum_{\beta=A.G} S_{\beta} = 1 \qquad P_g - P_l = P_c$$

Single process-Hydrodynamic process

Key Parameter-permeability

Single process-Hydrodynamic process

Key Parameter-relative permeability

院武汉岩土力学研究所

Single process-Hydrodynamic process

Fluid property

473-Density (kg/m3) Temperature (K) 423-Committee (1967) 373-323-**Mixtures** Density, viscosity, 473enthalpy Viscosity (*10-5 Pa s) Temperature (K) 423-373-323critical saturation point line Pressure (bar) 273-473-60 · Enthalpy (kJ/kg) Temperature (K) 423-373-323-Temperature (°C)

Pure CO₂

Pressure (bar)

Pure H₂O

International Formulation

4 開 出 以 石

Coupled processes-Hydrodynamic process

MRI images of CO2 displacement (Jiang LL, 2016)

Pore-scale

Numerical simulation of CO₂ injection (site-scale)

Coupled processes-Hydrodynamic process

Impure CO₂ injection at Tongliao

Lei, et al. 2016

Coupled processes-Hydrodynamic process Monitoring of CO₂ migration Boait, et al. 2012

2004

Sleipner Field

2006

Shenghua CCS site

Li, et al. 2016

Single process-Thermal process

Must be coupled

Energy conservation

with H! $\frac{d}{dt} \int_{V_n} M^{\kappa} dV = \int_{\Gamma_n} \mathbf{F}^{\kappa} \bullet \mathbf{n} d\Gamma + \int_{V_n} q^{\kappa} dV$ convection conduction $\mathbf{F}_{\beta}^{\kappa+1} = -\frac{\lambda \nabla T}{\Gamma} + \sum_{\beta} h_{\beta} F_{\beta}$ $M^{\kappa+1} = (1-\phi)\rho_R C_R T + \sum_{\beta \neq \alpha} \phi S_{\beta} \rho_{\beta} u_{\beta}$ $\beta = A, G$

Single process-Mechanical process

Motion equation

$$-G\nabla^{2}w_{x} - \frac{G}{1-2\upsilon}\frac{\partial}{\partial x}\left(\frac{\partial w_{x}}{\partial x} + \frac{\partial w_{y}}{\partial y} + \frac{\partial w_{z}}{\partial z}\right) + \frac{\partial P}{\partial x} + 3\beta_{T}K\frac{\partial T}{\partial x} = 0$$

$$-G\nabla^{2}w_{y} - \frac{G}{1-2\upsilon}\frac{\partial}{\partial y}\left(\frac{\partial w_{x}}{\partial x} + \frac{\partial w_{y}}{\partial y} + \frac{\partial w_{z}}{\partial z}\right) + \frac{\partial P}{\partial y} + 3\beta_{T}K\frac{\partial T}{\partial y} = 0$$

$$-G\nabla^{2}w_{z} - \frac{G}{1-2\upsilon}\frac{\partial}{\partial z}\left(\frac{\partial w_{x}}{\partial x} + \frac{\partial w_{y}}{\partial y} + \frac{\partial w_{z}}{\partial z}\right) + \frac{\partial P}{\partial z} + 3\beta_{T}K\frac{\partial T}{\partial z} = \gamma_{sat}$$

Must be coupled with H and T !

Stress-strain

$$\sigma'_{x} = 2G(\frac{\upsilon}{1-2\upsilon}\varepsilon_{v} + \varepsilon_{x}) + 3\beta_{T}K\Delta T$$

$$\sigma'_{y} = 2G(\frac{\upsilon}{1-2\upsilon}\varepsilon_{v} + \varepsilon_{y}) + 3\beta_{T}K\Delta T$$

$$\sigma'_{z} = 2G(\frac{\upsilon}{1-2\upsilon}\varepsilon_{v} + \varepsilon_{z}) + 3\beta_{T}K\Delta T$$

$$\tau'_{yz} = G\gamma_{yz}, \tau'_{zx} = G\gamma_{zx}, \tau'_{xy} = G\gamma_{xy}$$

Strain-displacement

$$\varepsilon_{x} = -\frac{\partial w_{x}}{\partial x}, \gamma_{yz} = -\left(\frac{\partial w_{y}}{\partial z} + \frac{\partial w_{z}}{\partial y}\right)$$
$$\varepsilon_{y} = -\frac{\partial w_{y}}{\partial y}, \gamma_{zx} = -\left(\frac{\partial w_{z}}{\partial x} + \frac{\partial w_{x}}{\partial z}\right)$$
$$\varepsilon_{z} = -\frac{\partial w_{z}}{\partial z}, \gamma_{xy} = -\left(\frac{\partial w_{x}}{\partial y} + \frac{\partial w_{y}}{\partial x}\right)$$

Single process-Chemical process

Single process-Chemical process

Chemical reaction-gas solution

Single process-Chemical process

Chemical reaction-water/rock reaction

Reaction rate for kinetic minerals

$$k(T) = k_{25}^{nu} \exp\left[\frac{-E_a^{nu}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right]$$

$$r_m = \pm k(T)_m \left|1 - \left(\frac{Q_m}{K_m}\right)^{\theta}\right|^{\eta} + k_{25}^{H} \exp\left[\frac{-E_a^{H}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right]a_H^{n_H}$$

$$+ k_{25}^{OH} \exp\left[\frac{-E_a^{OH}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right]a_{OH}^{n_{OH}}$$

Coupled processes-Chemical process CO₂-water-rock reaction-batch experiment

CO2-water-rock reaction near the wellbore

Coupled processes-Chemical process Long term CO₂-water-rock reaction

Kampman, et al. 2014

Outlines

- **D** Background
- □ Interactions between THMC processes
- **D** Individual processes
- Coupled processes
- **Conclusions and recommendations**

Coupled processes-Focus

Number of process	Coupling
1	Τ、 Η、 C 、 Μ
2	$TH_{v}, HM_{v}, HC_{v}, MC_{v}, TM_{v}, TC$
3	THC、THM、HMC、TCM
4	ТНМС

Induced-seismicities can be mitigated by regulations, site selection, evaluation, monitoring and control

stress-strain and pore pressure change
fault stability
mechanical integrity of the cap-rock
ground surface uplift

Ground surface uplift Injection well

Pressure buildup induced by CO2 injection is the driving force !

The changes of the stress-strain and pore pressure

CO₂ injection

- \rightarrow Pore pressure increase
- \rightarrow Effective stress decrease
- \rightarrow Pore volume expansion
- \rightarrow Facilitating the evolution of the

pore pressure

 \rightarrow Promoting CO2 migration

Importance:

- Preconditions for analyzing other issues
- Basic understandings for the changes of cap-rock and reservoir

The change of the pore pressure

Vilarrasa et al. 2010

- Prominent effect of mechanics to pore pressure.
- Notable difference between the aquifer and cap-rock.

Ground surface deformation

Coupled processes-HM processesGround surface deformation D_{ground}

The permeability of the cap-rock has and effect to the surface uplift.
 Temperature and stiffness have a slight effect.

Direct
 response of the subsurface
 mechanical
 issues
 Coinciding
 with the monitoring
 results

In Salah project Left: numerical simulation Right: field monitoring

ZONE 2

CAPROCK 1

-2000

-1000

DISTANCE FROM INJECTION POINT, X (m)

-1300

-1400 -1500

-3000

Coupled processes-HM processes

1000

2000

Mechanical integrity *Elastic model*

Two-dimensional plane-strain model

Partial coupling method

Compressive stress regime $\sigma_r = 1.5 \sigma_r$

• Shear failure is likely to be initiated in shallowly dipping at the interface between the reservoir and cap-rock.

• Low possibility for tensile failure.

Rutqvist et al. 2007

3000

岩土力学与工程国家重点实验室

Coupled processes-HM processes anical integrity *Elastic model*

Extensional stress regime $\sigma_x = 0.7 \sigma_z$

•High potential for shear failure occurs throughout the CO2-storage system and in preferentially steeply dipping fractures.

•High potential for tensile failure occurs in the bottom of the cap-rock

•In compressional stress regime, shear failure is much more likely to occur.

•Compressional stress regime is not favorable for mechanical integrity.

Mechanisms for inducing earthquakes

- The effective stress acting on fault decrease by increasing pore pressure.
- The loading condition on fault has changed.

Fault stability- Constitutive model and failure criterion

Elastic-perfectly plastic

theory

- Mohr-Coulomb criterion
- Zero cohesive strength.
- The coefficients of the

static friction: $0.6 \le \mu \le 0.85$

Stability evaluation of the fault

Slip tendency on fault surface

The slip tendency is defined as the ratio of the shear stress to the normal effective stress

$$T_s = \frac{\tau}{\sigma_n - p_f}$$

Streit et al.2004

 $\sigma_{\rm n}$ — Normal effective stress

- au Shear effective stress
- p_f Pore pressure

Evaluating the seismic magnitude

Quantification of the overall size of an earthquake is generally based on the seismic moment M_0 defined for a ruptured patch on a fault by the following:

$$M_o = \mu A d$$

 $M = (\log_{10} M_o / 1.5) - 6.1$

- *M* Seismic magnitude
- μ Shear module
- A Reactive area
- d Slip distance

Intention: earthquake magnitude resulting from CO2 injection

 $M_{0} = 4 \times 10^{9} \times 1000 \times 385 \times 0.08 = 1.23 \times 10^{14} Nm$ $M = (\log_{10} M_{o} / 1.5) - 6.1 = 329$

Shenhua CCS site

temperature

Summary

耦合途径:

- 通过物质、能量的交换
- 通过对材料特性、结构、相态的改变

1. The key indicators of CGUS project performance are capacity, injectivity, sealing, stability and productivity

土力学与工程国家重点系

- 2. Prediction is based on detailed geological model and on knowledge and analysis of THMC processes
- 3. Short-term processes in EOR and DSF/EWR have be well understood and reasonably simulated
- 4. Their long-term processes and the other CGUS options need to be studies
- 5. Fully coupled analyses is not always necessary. Identifying the dominated processes is critical

Thank you !

