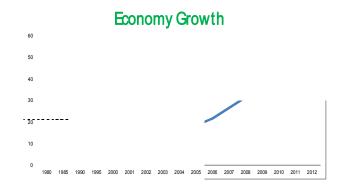
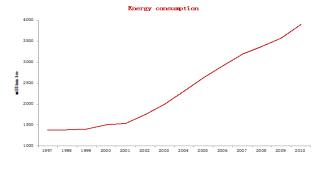
CAGS Workshop II, Shanghai, China, 12 May, 2014

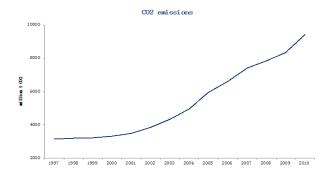
Status of CCUS in China

The Administrative Centre for China's Agenda 21

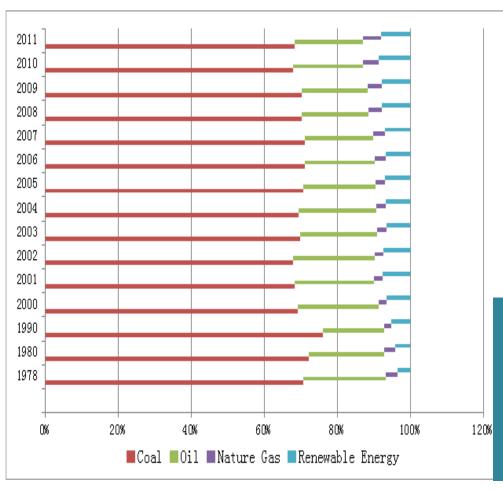
Contents

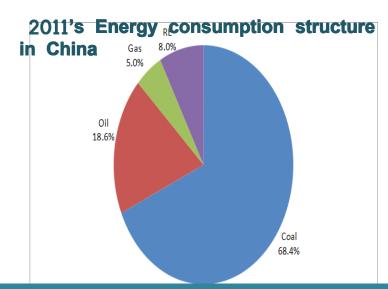

- Overview of Economy, Energy and Emissions in China
 - Role & Potential of CCUS to CO2 Emissions Reduction
 - 3 CCUS Activities: Policy, R&D, demo
- 4 Conclusions


1

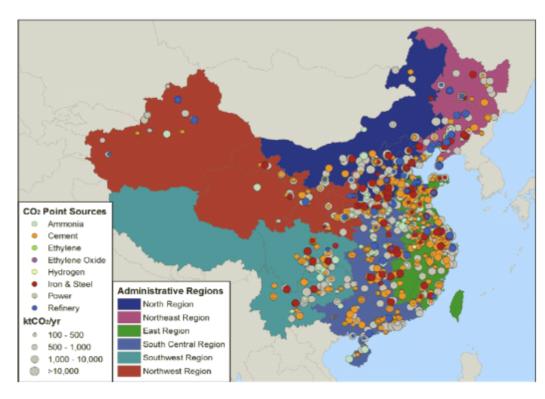

Overview of Economy, Energy

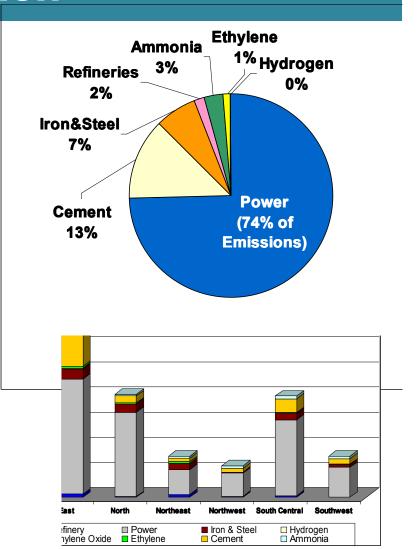
Economy, Energy and Emissions in China


- During the period of rapid industrialization and urbanization, the GDP from high energy-intensive industries accounted for a big proportion in China.
- The energy demand increases by 200 million tce annually in the recent years.
- From 1990 to 2010, CO2 intensity declined by 57%, that is rare all over the world.
- From 1990 to 2010, the GDP grew by 7.3 times, while energy consumption and CO2 emission increased by 3.3 and 3.0 times.
- CO2 emission intensity to drop 40-



Coal accounts for around 69% of Primary Energy Consumption in the past 30 years.





Renewable and nuclear energy development is remarkable, the share of which in primary energy mix keeps increasing, but still could not meet the new incremental demand for energy services in quite a long time.

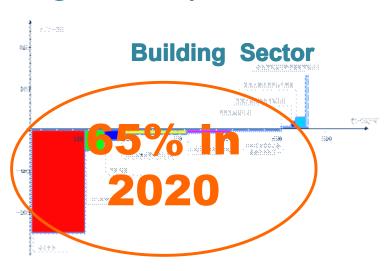
Large Industrial CO₂ Point Sources & Distribution

- ♦ Power, Cement and Iron & Steel
- ♦ The East, North and South Central

Source: RT Dahowskia, X Li et al., A Preliminary Cost Curve Assessment of Carbon Dioxide Capture and Storage Potential in China, Energy Procedia 00 (2008) 2849-2856.

2

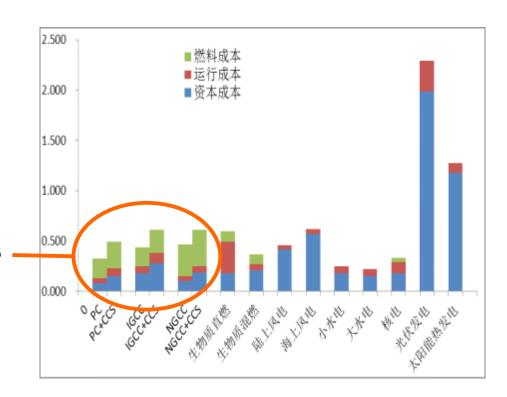
role and Potential of ccus in china

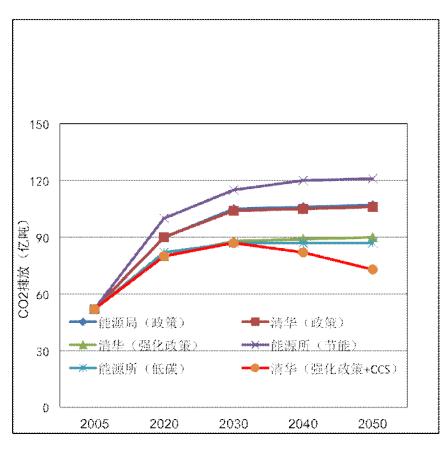

Normal mitigation technologies have great potential for CO2 reduction in China currently, and are cost effective.

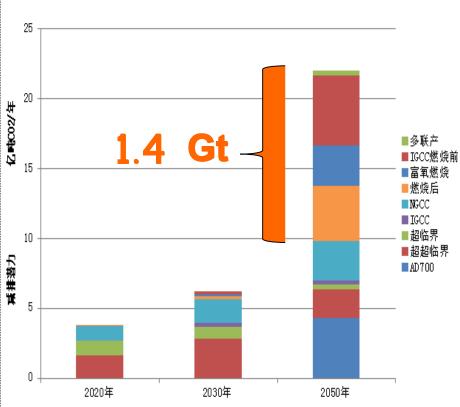
Mitigation Potential

	2020	2030	2050
Mitigation tech. in Industry, Transport and Building	2.2Gt	3.8Gt	5.0Gt
Non-Fossil Energy Tech.	1.5Gt	3.0Gt	5.3Gt

Mitigation Cost (big portion of negative cost)




CCUS is not mature and is expensive


- High costs
- High energy penalty
- High risk

A big portion of fuel costs in total cost.

Scenario analysis suggests CCUS will play important role in midand long-term.

Theoretical Storage Capacity

Saline Aquifer

Depleted Gas Reservoirs

Examined 17 onshore basins and 10 offshore

Applied specific storage volume method based on Capacity:

3.1TtCO₂

- 2.3 GtCO₂onshore
- 0.8 GtCO₂ offshore

- Examined 23 onshore basins and 6 offshore
- Capacity **5.2 Gt**CO₂ storage potential
 - 4.3
 GtCO₂
 onshore
 - 0.9
 GtCO₂
 offshore

EOR

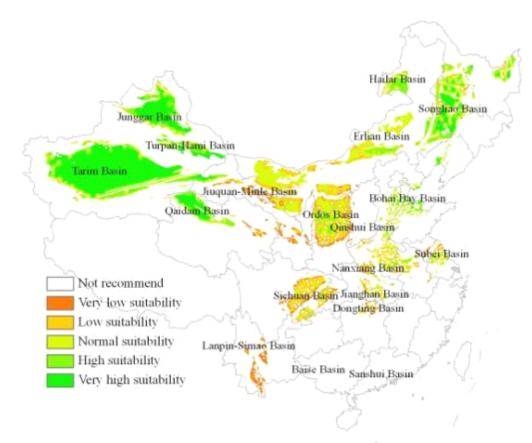
- Examined 29 onshore basins and 21 offshore
- Capacity

4.8GtCO₂

- 4.6 GtCO₂ onshore
- 0.2 GtCO₂ offshore
- Up to 7.0 BBO additional oil recovery

ECBM (600-1500m)

- 10% of OCIP for storage
- Examined 69 onshore coalbearing regions
- **12.1Gt**CO₂ capacity
- 1.6 Tm³
 additional coal bed methane recovery


(Source: Li et al, 2007)

Ranking of potential storage sites

Criterion				Classes				weight
1 st order	2 nd order	Killer	1	2	3	4	5	
	Size of	<500 km²	<1000	Small	Medium	Large	Gant	0.01
	structure		km ²	<5,000	<10,000 km ²	<50,000	>50,000 km ²	
	element			km²		km²		
	(divided by							
	faults)							
	Maximum	<1000m	Shallow		Intermediate		Deep	0.03
	depth		(<1,500 m)		(1,500-3,000 m)		(>3,000 m)	
	Average	dmD	1-10mD	10-50mD	50-100mD	100-500mD	>1000mD	0.1
	permeability							
	of storage							
	formation							
tors	(total,	≪%	5-10%	10~15%	15~20%	20~25%	>25%	0.02
ig g	effective)							
E .	porosity							
8	Ruid		pressure		pressure ratio		pressure	0.01
ty (majo	pressure		ratio (>1.2)		(1.0-1.2)		ratio (<1.0)	
st crage capacit y and injectivity (major economic factors)	Injection thickness	<10m	10-20m	20-50m	50-100m	100-300m	>300m	0.08
capad	Reservoir		Pluvial and		Ruvial		Lacustrine	0.02
age	failure		Alluvial		facies		and paludal	
8	(pressure		facies				facies	
	build-up)							
	Primary seal		-		-		-	0.01
	formation							
	Geothermal		Warm basin		Moderate		Cold basin	0.05
			(>40?/km)		(20-40? /km)		(<20? /km)	
	Geology		Extensively		Moderately		Limited	0.02
			faulted and		faulted and		faulting	
			fractured		fractured			
	Active faults	<10km	10-20km		20-40km		≯ûkm	0.06

Methodology for site screening

maturity				
Sedimentary facies	Pluvial and Alluvial	Ruvial	Lacustrine and paludal	0.03
Primary seal formation	seal by different lithology	regional seal formation	Basin scale seal formatin	0.03
Buffer formations	Pluvial and Alluvial	Ruvial	Lacustrine	0.01

3

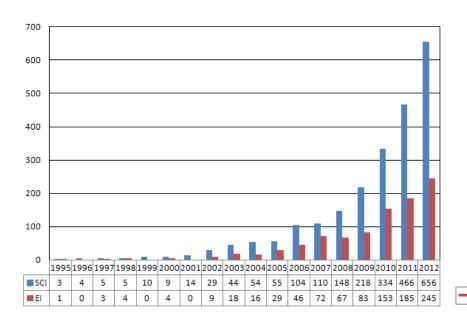
CCUS activities: Policy, R&D and demo

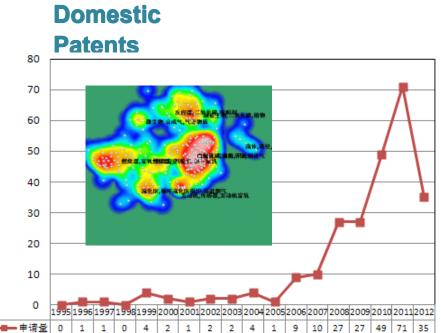
Policies are getting into details gradually

- National Medium- and Long-Term Program for Science and Technology Development (2006-2020)
 by State Council, 2006
- China's scientific actions on climate change,
- 12th National Scientific and Technological Plan on Climate Change by MOST, May 2012
- Work plan for 12th 5-year National GHG Control by State Council, 2012
- S&T roadmap of China's CCUS development
- Special Plan for CCUS technology development by MOST, 2013

General statement

"to develop CO2 near zero emission technology"




Detailed development measure

Targets, actions in capture, storage, utilization and storage, full-chain demo, etc

Trends of Paper & Patent on CCUS (1995-2012)

SCI & El Papers

CCUS Progress Summary: R&D

R&D Activities in the 11th FYP

Project Title	Funding by	Duration	Type of projects
The Project of CCS - EOR, Utilization and Storage	973	2006-2010	Basic Research
Program of CO2 Capture and Storage technology	863	2008-2010	
The Key Tech Research Program on CCS-EOR and Storage	863	2009-2011	Technology R&D
The Key Tech Research Program on CO2-Algae-Biodiesel	863	2009-2011	
CO2- Safety Mining with CO2 Gas Reservoirs and CO2 Utilization Tech	National Major Special Project	2008-2010	
Demonstration Project of Mining and Utilization Tech of Volcanic gas containing CO2 in Songliao Basin	National Major Special Project	2008-2010	R& D

CCUS Progress Summary: R&D

R&D Activities in the 12th FYP

Name of Projects	Funding by	Duration	Type of projects
Demonstration Project of CO2 capture and geological storage in Coal Liquification Plant, China Shenhua Group	National Key Technology R&D Programme	2011-2014	Technolog y R&D
The Key Tech Research Project of CO2 Emission Reducing on Iron-Steel Sector	National Key Technology R&D Programme	2011-2014	
Research and Demostration Program of IGCC +CO2 Caputure, Utilization and Storage	National Key Technology R&D Programme	2011-2013	Technolog y R&D
CO2 Storage Capacity Assessment and Demonstration in China	China Geological Survey	2011-2014	
The Program of CCS - EOR, Utilization and Storage	973	2011-2015	Basic Research

CCUS Progress Summary: Enterprise Action

Project Title	Scale	Capture Tech	Storage/ Utilization	Status
The pilot project of CO2 Capture, Huaneng Beijing Gaobeidian Thermal Power Plant	Capture Capacity:3,000 T/Y	Post- Combustio n	Food Use	Operated in 2008
Demonstration Project of CO2 capture and storage in Coal Liquification Plant, China Shenhua Group	Capture Capacity:100,000 T/Y Storage Capacity: 100,000 T/Y	Coal liquefactio n	Saline Aquifer	operated in 2011
Demonstration Project of CO2 capture, Storage and Utilization in IGCC Plant Greengen of Huaneng	Capture Capacity:60,000 100,000 T/Year	Pre- Combustio n	EOR	Launched in 2011
Small Scale Demonstration Project on CO2 Capture and EOR in Shengli Oil Field, Sinopec	Capture/Utilization:40,000T/	Post- Combustio n	EOR	Operated in 2010
Demonstration Project of CO2 capture, Shanghai Shidongkou Power Plant, Huaneng	Capture Capacity:120,000 T/Y	Post- Combustio n	Food/ Industrial	Operated since 2010
Demonstration project of Carbon Capture, Shuanghuai Power Plant, China Power Investment	Capture Capacity:10,000 T/Y	Post- Combustio n	Food/ Manufactur e	Operated in 2010
Pilot Plant of CO2 capture in Lianyungang City, CAS	Capture Capacity:30,000 T/Y	Pre- Combustio	N/A	Operated in 2011

Demonstration

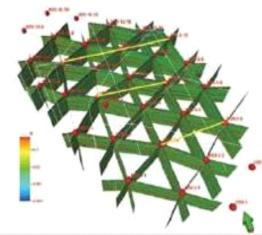
China Power Investment, 10,000t/a capture pilot

Huaneng Group
Gaobeidian & Shidongkou Power

Plant Demo

Huazhong University of S&T (HUST)

35MWt Oxy-fuel pilot,



Demonstration

PetroChina

CO₂ EOR ,Jilin Oilfield

ENN Group

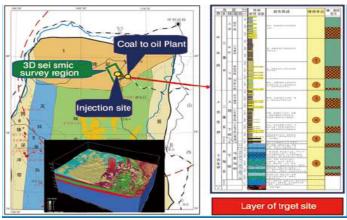
Micro algae Bio-fuel Pilot Capacity: 20,000t/y

China United Coalbed Methane

ECBM Pilot Project

> Qinshui, Shanxi

CUCBM CO2-ECBM Well Site


Demonstration

SINOPEC, Shengli Oil Field CO2-EOR, 1Mt CO2/year

Shenhua Group Erdos, 300,000t/a

CCUS Progress Summary: International Collaboration

Project	Partner	Duration
China-Australia Geological Storage of CO2 (CAGS)	Dol, GA	2012-2014
China-EU NZEC Cooperation	UK, EU, Norway	2007-2009
China-EU Carbon Capture and Storage Cooperation (COACH)	EU	2007-2009
Sino-Italy CCS Technology Cooperation Project(SICCS)	ENEL	2010-2012
China-US Clean energy Research Center	MOST, NEA, DOE	2010-2015
CSLF Capacity Building Projects	CSLF	2012-
MOST-IEA Cooperation on CCUS	IEA	2012-

Vision and

Technically Feasible & economically

affordable

Technical
Capacity for applications

Launch fullchain demo

System scale: >0.3million tons/a
Energy penalty: <25%
Cost: 350 RMB/ton

Capture system: 0.3-1 million tons/a Energy penalty: <20% Cost: 210 RMB/ton

Pipeline: >80km Cost: 90 RMB/ton Capacity:0.3million

Utilization scale:
million tons/a
Oil-production:
0.3million tons/a

Storage percentage:

Storage: 0.3million

tons/a

Cost: 50 RMB/ton

System scale: 1 million tons/a

Energy penalty: <20% Cost: 300 RMB/ton

Establish 1
Mt/a full-

chain demo

Capture system:
1 million tons/a
Energy penalty:< 15%
Cost :180 RMB/ton

Pipeline:200km Cost:80RMB/ton+million km

Utilization scale:2
million tons/a
Oilproduction:0.6million
tons/a

Storage: 1million tons/a Cost: 40 RMB/ton

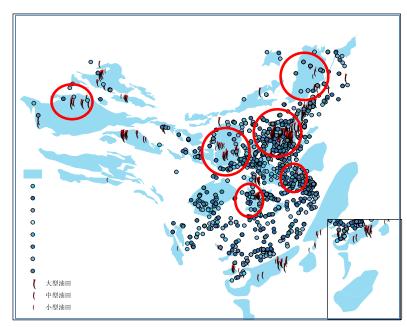
System scale:

>1 million tons/a
Energy penalty: <17%
Cost: 240 RMB/ton

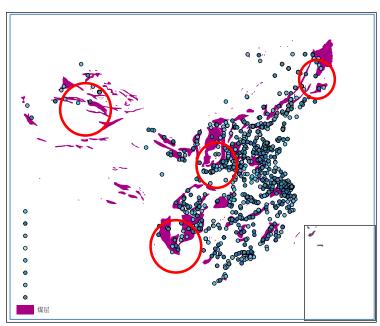
Capture system: >1 million tons/a Energy penalty:< 12% Cost: 140 RMB/ton

Pipeline net:>= 1000km Cost: 70 RMB/ton

Utilization scale:>2
million tons/a
Oil-production:1million
tons/a
Storage percentage:


Storage: >1million

tons/a


Cost: 30 RMB/ton

2015 2020 2030

CCUS Technology Roadmap: Full Chain Demo

EOR and Depleted Oil reservoir Storage Opportunities

ECBM Storage Opportunities

Current Work

 An Assessment Report on CO2 Utilization Technologies in China will be published soon, led by ACCA21.

00,

Saline Formation

Enhanced Energy Recovery

- Enhanced Resources Recovery
- Chemicals production
- Bio & Agriculture production
- Products from industrial wastes

4

conclusions

CCUS is important to China

- In the long term, an important technical option for CO2 reduction.
- In the short term, could serve as important tool to solve energy and resource issues, e.g. enhanced exploration of shale gas, geothermal, saline water and liquid mineral.
- Besides technology R&D, enabling policies are essential for the take off of CCUS.
- The nature of CCUS technology calls for enhanced International collaboration.

Thank you!

For More Information, Please Visit:

www.ccusChina.org.cn