

Gas-solid Interaction in ECBM

Dr. Geoff G.X. Wang (王国雄)

School of Chemical Engineering The University of Queensland, Brisbane, QLD 4072, Australia Email: gxwang@uq.edu.au

Outline

Overall process

- Gas transport in coal
- Multi-scale and multi-component coupling

Gas sorption and diffusion in coal

- Measurements of gas adsorption on coals
- Gas adsorption/desorption in coal
- Gas diffusion sorption kinetics
- Transport properties of coal and their roles

• Sorption-induced swelling/shrinkage of coal

- Measurement of sorption-induced stain in coal
- Improved modeling with the sorption-induced stain data
- Influence on CBM/ECBM process

Supercritical CO₂ and coal

- Reaction of $ScCO_2$ with coal
- Structural evolution and element migration in coal with ScCO₂

China Australia Geological Storage of CO2

Gas transport in coal

Overall ECBM process

CBM/ECBM deals with coupling processes in a multi-component system (gas) under multi-scale porous media (solid).

China Australia Geological Storage of CO2

Coupling processes in CBM/ECBM

Key transport behaviors include:

- Gas sorption equilibrium
- Gas diffusion
- Gas flow
- Dynamic permeability

Interactions:

- Initially receives the pressure drop determined by the initial reservoir pressure and wellbore pressure
- Forms the pressure fields necessary for desorption of gas from coal.
- Desorbed gas driven by gas concentration gradient enters cleats mainly through surface diffusion in microspores and Knudsen and molecular diffusion in mesomacropores, forming the gas flow in coal.
- The gas flow alter the pressure fields and hence the adsorption/desorption equilibrium which will further affect gas diffusion.
- Meanwhile, the gas flow would be dynamically changed as permeability changes due to the sorption-induced matrix shrinkage/swelling in coal.
- The latter will alter pore structure to some extent and hence the gas diffusion in coal.

China Australia Geological Storage of CO2

Outline

Overall process

- Gas transport in coal
- Multi-scale and multi-component coupling

Gas sorption and diffusion in coal

- Measurements of gas adsorption on coals
- Gas adsorption/desorption in coal
- Gas diffusion sorption kinetics
- Transport properties of coal and their roles

• Sorption-induced swelling/shrinkage of coal

- Measurement of sorption-induced stain in coal
- Improved modeling with the sorption-induced stain data
- Influence on CBM/ECBM process

Supercritical CO₂ and coal

- Reaction of $ScCO_2$ with coal
- Structural evolution and element migration in coal with ScCO₂

China Australia Geological Storage of CO2

Measurements of gas adsorption on coals

- Effective probes to characterize coal samples: PSD, SSA,...
- Representative coal particle size: crushing, grinding,...
- Proper experimental setups: volumetric, gravimetric,...LP, HP,...
- Analysis: Equilibrium and Kinetics on the basis of dry or ME

HP CH₄ adsorption isotherms

HP sorption means adsorption/desorption at higher pressures (>20 MPa)

HP CO₂ adsorption isotherms

High-pressure CO₂ isotherms on coal A

Excess sorption & open hysteresis

Gas sorption kinetics analysis

Gas diffusion in coal

Roles of transport properties

Process	Parameter	Role
Desorption	Langmuir pressure, P _L (MPa) Langmuir volume, V _L (cm ³ /g)	Determination of gas content or adsorption/desorption capacity of CBM reservoir
Diffusion	Diffusivity, D (cm ² /s)	Controlling microspore transport, i.e. migration of gas molecules in microspores of coal
Darcy flow	Permeability, k (md)	Dominating gas transport in cleats/features of coal

Table Transport properties of coal and their roles in CBM recovery

 $> V_L$ - maximum storage capacity

>P_L - the pressure at which gas storage capacity equals one half of V_L

 $\succ\tau$ - the time required to desorb 63.2% of the initial gas volume

> D - diffusion property of coal

> K - index how well gases pass through coal

- ≻To make a good ECBM producer:
 - ✓ High net effective coal thickness
 - ✓Laterally extensive coals
 - ✓ High gas content/saturation
 - ✓ High permeability confined to coal seams
 - ✓ Shallow depth (low cost to drill)
 - \checkmark Low CO₂ content

Outline

Overall process

- Gas transport in coal
- Multi-scale and multi-component coupling

Gas sorption and diffusion in coal

- Measurements of gas adsorption on coals
- Gas adsorption/desorption in coal
- Gas diffusion sorption kinetics
- Transport properties of coal and their roles

• Sorption-induced swelling/shrinkage of coal

- Measurement of sorption-induced stain in coal
- Improved modeling with the sorption-induced stain data
- Influence on CBM/ECBM process

Supercritical CO₂ and coal

- Reaction of $ScCO_2$ with coal
- Structural evolution and element migration in coal with ScCO₂

China Australia Geological Storage of CO2

Swelling/shrinkage of coal

The swelling and shrinkage that occurs in coal as gas is adsorbed or desorbed are well-known phenomena, referred to as sorption-induced strain. The sorptioninduced strain of the coal matrix leads to a change in the width of cleats or fractures and hence has a significant effect on permeability, and hence the gas flow in coal.

As much as 90% of the change in reservoir permeability may be due to sorption-induced strain!

China Australia Geological Storage of CO2

Sorption-induced stain

Sorption-induced strain represents

- Strain:
$$S = \begin{cases} \frac{\Delta V}{V} (Volumetric) \\ \frac{\Delta L}{L} (Longitudinal) \end{cases}$$

- Swelling or shrinkage caused by gas desorption/adsorption
- > Permeability is strong function of sorption-induced strain

Measurement of sorption-induced stain in coal

Main activities

Stressed anisotropic permeability Stressed sorption Competitive sorption/diffusion Water behavior Long term interactions Open source CO2ECBM reservoir model

Cags

China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

Strain changes and gas displacement during CO₂ flush (sequestration)

中

Ref.: G.X. Wang, X.R. Wei, K. Wang, P. Massarotto and V. Rudolph (2010): Sorption-induced swelling/shrinkage and permeability of coal under stressed adsorption/desorption conditions. IJCG 83, <u>46</u>-54.

China Australia Geological Storage of CO2

Dynamic permeability during stressed adsorption/desorption

Fig 2 Changes of permeability during CH_4 pre-adsorption at Step 1 of Test A.

Ref.: G.X. Wang, X.R. Wei, K. Wang, P. Massarotto and V. Rudolph (2010): Sorption-induced swelling/shrinkage and permeability of coal under stressed adsorption/desorption conditions. IJCG 83, 46-54.

中

China Australia Geological Storage of CO2

澳二氧化碳地质封存

equilibrium <u>Step 2</u> CH₄ desorption by reducing the gas pressure to 2, 1 and 0.4 MPa step by step, 48 hrs each step

CH₄ pre-adsorption for one week by changing helium to

 CH_4 gas at 3 MPa to approach the CH_4 adsorption

Fig3 CH₄ dynamic permeability and adsorption at Step 2 of Test A.

Some sorption-induced stain data

Coal	Sorbed Sorption-induced strain		Drogauro*	Pafaranaa	
	gas	Туре	Value, %	Plessule	Reference
Various	CH_4	Volumetric	0.2 - 1.6	~15.2 <u>MPa</u>	Moffat & <u>Weale</u> (1955)[83]
Kentucky coals	CO_2	Volumetric	1.31	20 psi	Reucroft & Patel (1986)[84]
Unclear	CH4 CO2	Longitudinal Longitudinal	0.06 1.0	800 psi 800 psi	Gray (1987) [29]
Unclear	CH_4	Volumetric	0.6	1000 psi	Harpalani & Schraufnagel (1990)[27
Bituminous	CO_2	Volumetric	0.36 - 1.31	0.41 <u>MPa</u>	Harpalani & Chen (1992)[82]
Unclear	CH4 CO2	Longitudinal Longitudinal	0.1 0.8	1000 psi 800 psi	Seidle and Hutti (1995)[36]
High-volatile bituminous	CH4 CO2	Longitudinal Longitudinal	0.2 0.5	1000 psi 750 psi	Levine (1996)[35]
Sub-bituminous	CO_2	Longitudinal	0.00182/MPa		St. George & Barakat (2001)[41]
Unclear	CH4 CO2	Volumetric Volumetric	0.5 1.1	1000 psi 750 psi	Zutshi & Harpalani (2004)[80]
Unclear	CH_4 CO_2	Volumetric Volumetric	0.49 2.41	1000 psi 800 psi	Chikatamarla & Bustin (2004)[76]
Bituminous Sub-bituminous	CO_2	Longitudinal Volumetric	0.2-0.3 0.3-5.0	101.325kPa	Fry etc. (2009) [79]
Bituminous	CH4 CO2 Ar	Volumetric	0.65 0.37-0.92 0.63	~8.1MPa	Van Bergen etc. (2009) [78]
Sub-bituminous	CO_2	Volumetric	1.05-1.49	~8.1MPa	Van Bergen etc. (2009) [78]
* 1 <u>MPa</u> = 145.038 p	si				

G

Table 4 Sorption induced strain data of some coals as reported in literature.

Improved modeling by including sorption-induced stain

$$k_{z} = k_{z0} [\zeta_{x} (1 - \varepsilon_{x}^{+})^{n} + \zeta_{y} (1 - \varepsilon_{y}^{+})^{n}]$$

$$\zeta_{i} = \zeta_{i0} \exp[-D_{z} \varepsilon_{z} \varepsilon_{z}^{+}] \quad with \quad \zeta_{x0} = \frac{l_{x}}{l_{x} + l_{y}}; \quad \zeta_{y0} = \frac{l_{y}}{l_{x} + l_{y}}$$

$$\varepsilon_{i}^{+} = \frac{\sigma_{i} - \sigma_{i0}}{E_{i}} - \sum_{j=x}^{z} [(1 - \delta_{ij})v_{ji} \frac{(\sigma_{j} - \sigma_{j0})}{E_{j}}] + \lambda \sum_{n=1}^{n_{c}} \alpha_{sn} (q_{\mu n} - q_{\mu_{0}n}) \quad (i = x, y, z) \quad (\varepsilon \sim \sigma)$$

Ref.: G.X. Wang, P. Massarotto and V. Rudolph (2009): An improved permeability model of coal for coalbed methane recovery and CO2 geosequestration. IJCG 77, 127-136.

China Australia Geological Storage of CO2 中澳二氧化碳地质封存

Improved modeling with sorption-induced stain data

Predictions vs. literature data (for a gas mixture: $51\%N_2 + 49\%CO_2$)

Ref.: G.X. Wang, P. Massarotto and V. Rudolph (2009): An improved permeability model of coal for coalbed methane recovery and CO2 geosequestration. IJCG 77, 127-136.

中

China Australia Geological Storage of CO2_

Comparison with UQ TTSCP data

Ref.: G.X. Wang, P. Massarotto and V. Rudolph (2009): An improved permeability model of coal for coalbed methane recovery and CO2 geosequestration. IJCG 77, 127-136.

China Australia Geological Storage of CO2

Outline

Overall process

- Gas transport in coal
- Multi-scale and multi-component coupling

Gas sorption and diffusion in coal

- Measurements of gas adsorption on coals
- Gas adsorption/desorption in coal
- Gas diffusion sorption kinetics
- Transport properties of coal and their roles

• Sorption-induced swelling/shrinkage of coal

- Measurement of sorption-induced stain in coal
- Improved modeling with the sorption-induced stain data
- Influence on CBM/ECBM process

Supercritical CO₂ and coal

- Reaction of $ScCO_2$ with coal
- Structural evolution and element migration in coal with ScCO₂

China Australia Geological Storage of CO2

HP-ScCO₂ geochemical reactor

Density changes with ScCO2 treatment

Incremental pore volumes

IV: interpores

Ref.: C.J. Liu, G.X. Wang, S.X. Sang and V. Rudolph (2010): Changes in pore structure of anthracite coal associated with CO₂ sequestration process. Fuel 89(10), 2665-2672.

Structural deformation with ScCO₂

Permeability changes with ScCO₂

Structural evolution & element migration

Summary

- CO₂ sequestration can be thought as an attractive technology to reduce GHG emission and enhance CBM recovery from deep coals.
- ✓ CBM/ECBM involves complex and coupling processes such as adsorption kinetics, diffusion and gas flow, which are highly related to the gas-solid interactions.
- Three key transport properties of coal, i.e. adsorption isotherm, diffusivity and permeability, have different behaviors and play different roles which have discussed.
- Permeability, a key factor that controls CBM/ECBM recovery and CCS process, should specifically investigated by experiments. Simulation with a proper model is important.

Acknowledgement

- Prof Victor Rudolph, UQ
- Prof Suresh K. Bhatia, UQ
- Prof Yong Qin, CUMT
- Prof Xuehai Fu, CUMT
- Dr Paul Massarotto, UQ
- A/Prof Sue Golding, UQ
- Dr Jun-Seok Bae, UQ & CSRIO
- Dr Xiaorong Wei, UQ & Linc Energy
- Dr Changjiang Liu, UQ, CUMT & CUP

