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Gas transport in coal
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Overall ECBM process

Sorption Permeability

CBM/ECBM deals with coupling processes in a multi-component
system (gas) under multi-scale porous media (solid).




Coupling processes in CBM/ECBM

» Key transport behaviors include:

Gas sorption equilibrium
Gas diffusion

Gas flow

Dynamic permeability

> Interactions:

— Initially receives the pressure drop determined by the initial reservoir pressure and
wellbore pressure

Forms the pressure fields necessary for desorption of gas from coal.

Desorbed gas driven by gas concentration gradient enters cleats mainly through
surface diffusion in microspores and Knudsen and molecular diffusion in meso-
macropores, forming the gas flow in coal.

The gas flow alter the pressure fields and hence the adsorption/desorption equilibrium
which will further affect gas diffusion.

Meanwhile, the gas flow would be dynamically changed as permeability changes due
to the sorption-induced matrix shrinkage/swelling in coal.

The latter will alter pore structure to some extent and hence the gas diffusion jn coal.
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Measurements of gas adsorption on coals

» Effective probes to characterize coal samples: PSD, SSA, ...
» Representative coal particle size: crushing, grinding,...

» Proper experimental setups: volumetric, gravimetric,...LP, HP,...

» Analysis: Equilibrium and Kinetics on the basis of dry or ME




HP CH, adsorption isotherms

HP sorption means adsorption/desorption at higher pressures (>20 MPa)
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HP CO, adsorption isotherms

High-pressure CO, isotherms on coal A

20 4 s Nexe - (padsorbed _pgas) 'Vpore
3K
L 323K
o 333K
S T ] /——/ﬁg’ CINexe _ (dpadsorbed _ dp gas } V
= Coal A | /’/’K- — ore
S 151 L dP dP dP P
E
— | 1.0
5 S
o \ e o
£ 1.0 v NS Ry
CU \.\ .>\\ B) .
g A TTe-g 78 g
) e 313K SN Ny 8 £ 061
% 0.5 - v 323K \.“\\\\k § L 0.4676
< B 333K g e € ..
8.93| 10.68| 12.45| 14.24 P ¢ 313K
¢ 343K [ v 323K
% O 333K
0.0 - T T . S 0.2 © 343K
0 5 10 15 20 O 8931 1068| ,, 45
pressure (MPa) 00 | v |
0 5 10 15 20 25
Ref.: J.-S. Bae and S. Bhatia (2006): High-Pressure Adsorption of Methane pressure (MPa)
and Carbon Dioxide ong8oal. Energy Fuels 20 (6), 2599-2607.

CO, density against g 4 Rressure

- China,Australia,Geological,Storage,of CO2

= S B B A



Excess sorption & open hysteresis
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Gas sorption kinetics analysis
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Effective diffusion coefficient, x1 0°s™

Gas diffusion in coal
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Roles of transport properties

Table Transportproperties of coal and their roles in CBM recovery

Process Parameter Role
Langmuir pressure, P_ (MPa

Desorption LangmuTrsolume ‘:f Eime ]] Determination of gas content or

P = L = adsorption/desorption capacity of CBM reservoir

Sorptiontime,t (day)

Diffusion Diffusivity, D (cm?/s) Ccntrollmgmm_rc:sporetransport, i.e. migration of gas

moleculesin microspores of coal

Micro-permeability, k (md)

Darcy flow Permeability, k (md) Dominating gas transportin cleats/features of coal

>V, - maximum storage capacity

»To make a good ECBM producer:

>P, - the pressure at which gas storage capacity equals v'High net effective coal thickness

one half of V, v'Laterally extensive coals

>1 - the time required to desorb 63.2% of the initial gas v’High gas content/saturation

volume v'High permeability confined to coal seams

»D - diffusion property of coal
»K - index how well gases pass through coal

v'Shallow depth (low cost to drill)
v'Low CO, content
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Swelling/shrinkage of coal

Adsorotion 07 DShrinkage » The swelling and shrinkage that occurs in
7 i coal as gas is adsorbed or desorbed are

well-known phenomena, referred to as
sorption-induced strain. The sorption-
induced strain of the coal matrix leads to
a change in the width of cleats or

fractures and hence has a significant
Desorpti Gﬂtj{:}cé Swelling effect on permeability, and hence the gas
O flow in coal.

As much as 90% of the change in reservoir
permeability may be due to sorption-induced strain!




Sorption-induced stain

» Sorption-induced strain represents

ﬂ(\/olumetric)
- Strain: S = Vv

A—LL(LongitudinaI)

- Swelling or shrinkage caused by gas desorption/adsorption

> Permeability is strong function of sorption-induced strain




Measurement of sorption-induced stain in coal

General process Mow diagram
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Dynamic permeability during stressed
adsorption/desorption
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Some sorption-induced stain data

Table 4 Sorption induced strain data of some coals as reported in literature.

Sorbed Sorption-induced strain

*
Coal = Type Value % Pressure Reference
Various CHy  Volumetric 02-16 ~152MPa  Moffat & Weale (1955)[83]
Kentuckycoals CO;  Volumetric 131 20 psi Reucroft & Patel (1986)[84]
CHy  Longitudinal 0.06 800 psi
L 2T CO.  Longitudinal 1.0 800 psi Gray (1987)[29]
Unclear CH,y Volumetric 0.6 1000 psi Harpalani & Schraufnagel (1990)[27]
Bituminous COh Volumetric  0.36-1.31 0.41 MPa Harpalani & Chen (1992)[82]
CH, Longitudinal 0.1 1000 psi , ,
Unclear CO, Longitudinal 0.8 800 psi Seidle and Hutti (1993)[36]
High-volatile CH, Longitudinal 0.2 1000 psi ,
bituinous CO;  Longitudinal 0.5 750 psi Levine (1996)[35]
Sub-bituminous CO:  Longitudinal 0.00182/MPa St. George & Barakat (2001)[41]
CH, Volumetric 0.5 1000 psi _ , ,
Unclear COs Volumetrie 1.1 750 psi Zutshi & Harpalani (2004)[80]
CH, Volumetric 049 1000 psi . .
Unclear O, Volumetdic 241 800 psi Chikatamarla & Bustin (2004)[76]
Bituminous Longitudinal 0.2-0.3 — . 5
Sub-bituminous &8 Volumetric  0.3-5.0 101.325kPa  Fry etc. (2009) [79]
CH, 0635
Bituminous CO:  Volumetric 0.37-092 ~8.1MPa Van Bergen etc. (2009)[78]
Ar .63

Sub-bituminous COh Volumetric 1.05-1.49 ~8.1MPa Van Bergen etc. (2009) [78]

C‘ *1MPa= 145.038psi _ )
o CA = O i




Improved modeling by including sorption-induced stain
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Ref.: G.X. Wang, P. Massarotto and V. Rudolph (2009): An improved permeability model of coal for
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Improved modeling with sorption-induced stain data

Predictions vs. literature data ( for a gas mixture: 51%N,+49%CO.)
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Comparison with UQ TTSCP data
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HP-ScCO, geochemical reactor
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Density changes with ScCO2 treatment
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Incremental pore volumes
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Structural deformation with ScCO,

Aperture sizes of the same cracks
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=t 1 / Increasing fluid pressure increases
e B / extension of cracks

Ref.. P. Massarotto, S.D. Golding, J.-S. Bae, R. lyer
and V. Rudolph (2010): Changes in reservoir properties
from injection of supercritical CO, into coal gpams — A
laboratory study. IJCG 82(3-4), 269-279.
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Permeability changes with ScCO,
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Structural evolution & element migration
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Summary

v CO, sequestration can be thought as an attractive technology
to reduce GHG emission and enhance CBM recovery from
deep coals.

v CBM/ECBM involves complex and coupling processes such
as adsorption kinetics, diffusion and gas flow, which are
highly related to the gas-solid interactions.

v" Three key transport properties of coal, i.e. adsorption
Isotherm, diffusivity and permeabillity, have different behaviors
and play different roles which have discussed.

v' Permeability, a key factor that controls CBM/ECBM recovery
and CCS process, should specifically investigated by
experiments. Simulation with a proper model is important.
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