The economics of CCS technology

Dr Gustavo Fimbres Weihs

G

Research Associate The University of New South Wales (UNSW) CO2CRC Economics Team Sydney, Australia CAGS Workshop II: CO₂ Aquifer Storage

All images copyright CO2CRC unless otherwise specified

CO2 CRC

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Aims of presentation

- To show:
 - how CCS costs are calculated
 - some of the factors that affect CCS costs
 - how to read the CCS research literature and economic reports
 - how economics can be used to make business and investment decisions for CCS

Outline

Part I – Economic methodology

- **Fundamentals of cash flow analysis**
- Net and incremental cash flow for a project
- **Economic indicators present value**

Part II – Calculating the effectiveness of CO₂ mitigation

- CO₂ avoided
- \$ per tonne CO₂ avoided
- Other indicators

Part III – Evaluating CCS projects

Factors affecting capture costs

中澳

Factors affecting transport and injection costs

Outline

Part I – Economic methodology

- Fundamentals of cash flow analysis
- Net and incremental cash flow for a project
- Economic indicators present value

Part II – Calculating the effectiveness of CO₂ mitigation

- CO₂ avoided
- \$ per tonne CO₂ avoided
- Other indicators
- **Part III Evaluating CCS projects**
- Factors affecting capture costs
- Factors affecting transport and injection costs

Aims of doing economics

- 1. Assess whether the project is economically viable
- 2. Compare CCS with alternatives
- 3. Comparison within CCS projects (trade-offs)

Why use cash flow?

- Most of the literature has analyses that show economics without projecting cash flow.
- This is simplistic.
- Projecting cash flow allows revenues and costs to change over time.
- The effect of tax, inflation and other costs can be changed over time.

Cash Flow

• Cash flow is the cash received less the cash spent over a defined period of time

Net cash flow = cash received

less

cash spent

Cash in = Revenue

- Examples of CCS revenue
 - Enhanced oil recovery
 - Enhanced coal bed methane recovery
 - Enhanced gas recovery
 - Revenue from a carbon price

Cash spent = Project costs

- Capital (2-3 years+)
 - explore, design, purchase, install equipment, compressors, pipelines, wells
- Operating (20-40 years+)
 - energy, materials, cooling water, maintenance, monitoring, administration, labour
- Abandonment (1-2 years+)
 - decommissioning, salvage, plugging wells, monitoring

Incremental net cash flow (NCF)

Net cash flow for original project + CCS project

less

Net cash flow for original project

equals

Incremental Net cash flow for CCS project

Present value

- One way to present project costs as a single number is the present value (PV)
- PV is the equivalent value of the costs today
- It is the money we would invest today in a bank to enable us to meet the costs of the project as they fall due

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

© CO2CRC All rights reserved

Discount rate

- The bank rate in the previous example is the discount rate
- In general, the discount rate is the return we would get on an alternative investment

Calculating Present Value

$$DiscountRate = d\%$$

$$DiscountFactor_{n} = \frac{1}{\left(1 + d\%\right)^{n}}$$

$$PV = \sum_{n} \frac{dollars_{n}}{\left(1 + d\%\right)^{n}}$$

(0)

Net Present Value (NPV)

- It is the present value of the NET cash flow
- It is the money you have to put in the bank today to match the NET cash flow from the project

$$NPV = \sum PV$$

= $PV_{Revenue} - PV_{Capital} - PV_{Operating}$
- $PV_{Abandonment}$
COOCCC
中澳二氧化碳地质封存

Outline

Part I – Economic methodology

- Fundamentals of cash flow analysis
- Net and incremental cash flow for a project
- Economic indicators present value

Part II – Calculating the effectiveness of CO₂ mitigation

- CO₂ avoided
- \$ per tonne CO₂ avoided
- Other indicators

Part III – Evaluating CCS projects

- Factors affecting capture costs
- Factors affecting transport and injection costs

\$ per tonne CO₂ avoided

- Represents the revenue per tonne you need to make CCS viable
- Using PV method –

Other Indicators

Incremental cost of electricity

 Difference between the cost of electricity with and without CCS (\$/MWh)

Energy Penalty

 Energy required for CCS (MW)

Outline

Part I – Economic methodology

- Fundamentals of cash flow analysis
- Net and incremental cash flow for a project
- Economic indicators present value

Part II – Calculating the effectiveness of CO₂ mitigation

- CO₂ avoided
- \$ per tonne CO₂ avoided
- Other indicators

Part III – Evaluating CCS projects

- Factors affecting capture costs
- Factors affecting transport and injection costs

Major factors affecting CCS costs

- Economic factors
 - Discount rate
 - Project life
 - Capex, Opex and Abandex
- Project specific factors
 - CO₂ avoided
 - Energy used
 - Load factor

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Reducing capture costs

- Reduce Capex cheaper, more efficient equipment
- Reduce Opex more efficient equipment, less energy demand
- Reduce energy penalty use improved solvent, heat and process integration

- Increase CO₂ captured improve capture efficiency
- Reduce CO₂ emitted improve process efficiency, change fuel
- Increase energy efficiency heat and process integration

Example: Effect of solvent regeneration energy

• Compare the capture costs and energy demand using MEA or KS1 solvent absorption

Capital costs for CO₂ transport & injection*

Example: CCS in South-East Queensland

Choosing injection location

Choosing pipeline routes

Example: CCS in central Queensland

China Australia Geological Storage of CO2 中澳二氧化碳地质封存

© CO2CRC All rights reserved

CRC

Effect of flow rate

Effect of sink permeability

Effect of well type

- Horizontal wells compared to vertical wells
- Trade-offs
 - Horizontal wells = high costs, better injectivity
 - Vertical wells = low costs, less injectivity

Summary

- CCS costs are project specific
- CCS projects require large expenditure
- There is variability and uncertainty in estimating costs

CO2CRC Participants

