CO₂ sequestration in saline aquifers: the case of the Bohai Bay Basin

Prof. Dr. Pang Zhonghe Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 CHINA z.pang@mail.iggcas.ac.cn http://www.isoh2o.org/

Outline

 What's CO₂ Geological Sequestration ?
 Overview of CO₂ sequestration in China
 Case study—an example from the Bohai Bay Basin (BBB), China
 Future work: saline aquifer science

What's CO₂ Geological Sequestration ?

Overview of CO₂ saline aquifer sequestration in China

Scientific research and field test on CO₂ geological sequestration CO₂ Geological Sequestration Atlas Projects of CO₂ sequestration in deep saline aquifers CO₂ Capture, Utilization and Sequestration (CCUS)

Scientific research on CO₂ geological sequestration

C-14 sampling at a test well

CO₂ solution: properties and transport at microscale and super-critical conditions

□ Magneto-suspension balance

Cap-rock mechanics

Bursting pressure

Natural analogue study ---CO₂ gas field

第 53卷 第 1期 2007年 1月 地质论评 GEOLOGICAL REV IEW Vol 53 No. 1 Jan. 2007

Characteristics and geological significance sandstone with dawsonite 合片钠铝石砂岩的基本特征及地质意义

Lithification of Dawsonite-Bearing Sandstone in the Qingshankou Formation in the Qian'an Oil Field of the South Songliao Basin

LI Fu-lai1, LIU Li1, YANG Hui-dong1,2, QU Xi-yu1, LIU Na1, ZHAO Guo-xiang1

Characteristics and Stability Analysis of Dawsonite in Sandstone

QU Xiyu¹⁾, LIU Li¹⁾, GAO Yuqiao²⁾, LIU Na¹⁾, PEN G Xiaolei¹⁾

1) College of Earth Sciences, Jilin University, Changchun, 130061;

 State Key Laboratory for Mineral Deposit Research, Department of Earth Sciences, Nanjing University, Nanjing, 210093

CO₂ sequestration numerical simulation

Spatial distribution of CO₂ mineral trapping per m3 media , from W. Zhang et al., 2009

Changes of chemical constitutes of formation before and after CO_2 injection, Y. Li et al., 2010

CO₂ Geological Sequestration Atlas

The National CO2 Storage Capacity and Suitability Assessment Project which is in charged by the Institute of Hydrogeology and Engineering Geology Techniques, Chinese Geological Survey is implemented since 2010.

➤National CO2 storage capacity and suitability assessment and mapping (1:5,000,000)

Candidate sedimentary basins for CO2 sequestration assessment and mapping (1:1,000,000);

Demonstration project of CO2 sequestration in deep saline formation in Ordos basin

Geological map of sedimentary basins for CO2 sequestration in China (1:5,000,000)

CO₂ sequestration in deep saline aquifers

CO₂ Capture, Utilization and Sequestration (CCUS) progresses

CO2-EOR (e.g. Songliao basin)
 CO2-ECBMR (e.g. Qinshui basin)

CO2 capture progresses in Clean Coal Technology (HuaNeng) and Transformation from coal to oil technology (ShenHua)

□ CO2-EATER

CO2-EOR

CO₂ capture progresses (HuaNeng)

Greengen group Ltd.: IGCC Power Plant 2011-2016, 250MW

IGCC conceptual model

CO₂ capture demonstration project

Clean Coal Technology, from National Science Exhibition of

The Eleventh Five Year Plan

CO₂ Capture technology (ShenHua)

CO2-EATER

Case study – Guantao saline aquifer in the Bohai Bay Basin (BBB), China

Location of the BBB

Latitute:35° ~42 ° 20′ Longitude: 114° 30′ ~ 124° Area: 200,000km² , and 40% are offshore

Geological cross section of the BBB

CO₂ storage capacity assessment of deep saline formations in the BBB

Guantao formation (Ng) is a excellent reservoir for CO_2 sequestration for its physical properties and regional distribution over the basin.

Porosity vs depth (a) and permeability vs depth of Guantao formation in Jiyang Depression

CO₂ storage capacity evaluation of the deep saline aquifers in the BBB

Depression name	Solubility trapping (Mt)	Residual trapping (Mt)	Total (Mt)	
Liaohe	4991.68	18.77	5010.46	
Liaodongwan& Bozhong	42937.27	200.33	43137.60	
Jizhong	19019.40	649.31	19668.71	
Huanghua	24354.06	749.18	25103.25	
Jiyang&Changwei	23152.05	82.21	23234.25	
Linqing	33505.63	82.21	33587.84	
total	147960.10	1782.01	149742.11	

Suitability assessment of CO₂ sequestration in the BBB

- CO2 geological storage size (or scale) assessment
- ➤ safety assessment
- geothermal conditions assessment
- hydrogeological conditions assessment
- resources utilization conflicts assessment (oil & gas, geothermal resources)

CO2 geological storage size (or scale) assessment

Geothermal conditions assessment

Saline water distribution in the BBB

Resources utilization conflicts

By consideration of factors, e.g. CO₂ storage size, resources utilization conflicts, safety assessment, CO_2 capacity and geothermal & hydrogeological conditions, some much more preferential zones for CO_2 sequestration are figured out.

Characterization of Guantao test in Beitang sag, BBB

Location of test site in Beitang sag in the BBB and cross-section map

Hydrogeological parameters of the Injection well:

- Porosity: 22.75~36.05%;
- Permeability: $435.12 \times 10^{-3} \sim 1483.18 \times 10^{-3} \mu m^2$
- Max. yield: 112.78m³/h
- Well head temperature: 57.5 ℃
- water type: CI-HCO3-Na
- TDS:1693.1mg/L

•pH:7.71

Field observation and sampling

Drilling cores sampling and Characterization of the reservoir (Ng) and caprock (Nm)

Study of stratigraphic sequence

Sedimentary sequence and diagenesis of the reservoir rock have been studies to help evaluate porosity and permeability distribution in the reservoir

Thin section analysis of the rocks

Caprock

Reservoir rock

Mineral composition of the rocks (XRD)

	Mineral composition %								
Samples	Quartz	Albite	Microclin e	Biotite	Chlorite	Smectite	Others		
Ng-1814m	55	12	6	3	2	I	Hornblende 3		
Ng-1813.78m	60	13	10	3	2 +kaolinite	trace	_		
Nm-1225m	30	13	8	4	4+kaolinite 1	trace	Dolomite 16		
Nm-888m	45	20	10	3	2+ kaolinite	trace	Calcite 15		
Nm-965m	40	19	8	3	3+ kaolinite	trace	Dolomite 10+Calcite 13		

Chemical composition of the rocks (XRF)

composition	SiO2	TiO2	AI2O 3	Fe2O3	MnO	MgO	CaO	Na2O	K2O	P2O5	LOI	TOTAL	FeO
samples	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Ng-1814m	76.3 4	0.27	11.13	2.26	0.03	1.09	1.23	2.48	2.73	0.09	1.94	99.59	1.02
Ng- 1813.78m	76.8 2	0.24	10.93	2.09	0.03	1.34	1.32	2.23	2.32	0.06	2.40	99.78	0.95
Nm-1225m	55.0 8	0.67	13.55	5.21	0.08	5.48	4.99	1.58	2.68	0.12	10.5 2	99.96	2.42
Nm-888m	65.4 3	0.60	13.85	3.83	0.31	1.12	4.04	2.06	3.05	0.13	5.62	100.04	0.31
Nm-965m	65.0 3	0.57	13.21	4.42	0.06	2.07	4.06	2.14	3.04	0.17	5.23	100.00	0.64

Formation water sampling

On site measurements: pH, EC,TDS, Eh, DO, Fe2+,Fe3+ 2H, 18O, 3H, 13C, 14C, 87Sr/86Sr Major ions, trace elements, SiO2

Hydrochemistry of formation waters

Guantao formation (Ng) are typical of HCO3-Cl-Na type water
TDS: 0.7-15 g/L
Average pH 7.7

Isotopic composition of formation waters from Guantao formation, Bohai Bay Bas<u>in.</u>

CO₂-water-rock interactions

Batch type autoclave (Parr 4575A)

Schematic diagram of the autoclave

Batch type reactor exploring into CO₂-water-rock interactions
 Max. pressure 345bar; max. temperature 500°C; bomb volume: 500ml

Preliminary results (200°C, 200bar, 15d)

SEM micrographs of microcline: (a) before reaction; (b) after reaction

SEM micrographs of albite: (a) before reaction; (b) after reaction

Field monitoring work

Soil gas monitoring

114 sample have been measured and the CO_2 concentration in the soil gas ranges from 1.0 \sim 10.4vol% with an average value of 2.64vol%.

Microtremor technology monitoring

Microtremor field measurement layout

Hydrogeochemistry monitoring

Water chemistry (including both major and trace elements)

- □ Isotopes (including $\delta^{18}O_{H2O}$, $\delta^{2}H_{H2O}$, $\delta^{18}O_{CO2}$, $\delta^{13}C_{DIC}$...)
- dissolved gas monitoring

pH, Temperature, Pressure of monitoring wells around

Future work: saline aquifer science

- Deep saline aquifers (DSA): a most promising option for CGS
- Concept: field tests can be onshore, but commercial scale deployment offshore
- Geochemical response of DSA to huge amount of CO₂ injection: future focus!!
- CCUS-Utilizing CO₂ while sequestrating it
 - $\Box CO_2$ -EOR
 - CO₂-EATER (enhanced aquifer thermal energy recovery)

A new discipline to emerge: Saline aquifer science and engineering !

H

Thanks !

中国科学院地质与地球物理研究所

INSTITUTE OF GEOLOGY AND GEOPHYSICS CHINESE ACADEMY OF SCIENCES