

Prof. PANG Zhonghe

Institute of Geology & Geophysics, Chinese Academy of Sciences, Beijing,100029 z.pang@mail.iggcas.ac.cn

- ▶场地描述的重要性 Why site characterization
- ➤ 课题介绍 Background of the project
- ➢场地地质背景 Geology of the test site
- ▶场地描述 Site characterization
 - 沉积学特征
 - 储、盖层物性特征
 - 储层流体特征
- ▶ 储层地球化学响应研究 Reservoir geochemical responses
- ≻结论 Conclusions

China Australia Geological Storage of CO2

什么是场地描述?

场地描述就是通过资料的收集、分析和解译,以一定的 准确度来判断某个选定的场地是否能在特定的时间内,在满 足健康、安全性和环境需求时,封存特定量的CO_{2.}

" The collection, analysis and interpretation of data and the application of knowledge to judge, with a degree of confidence, if an identified site will store a specific quantity of CO₂ for a defined period of time and meet all health, safety, environmental requirements."

China Australia Geological Storage of CO2

场地描述的重要性

试验场地的地质条件,包括地层岩性、构造特征、储物性(孔隙度、渗透率、流体组分以及矿物组分等),会影响CO2在储层中的物理、化学过程,进而影响其封存机制、运移特征、安全性、及封存潜力等。

CO₂地质封存示意图

China Australia Geological Storage of CO2

Ga

本是国家863计划十一五CO₂地质封存重点项目课题,由中国科学院地质与地球物理研究所,中国科学院武汉岩土力学研究所,大连理工大学和天津地热勘查设计研究院共同承担。

以渤海湾盆地北塘凹陷馆陶组咸水层为试验点,综合室内 实验、现场试验和数值模拟多种手段,研究CO₂/CO₂-咸水混合 流体的物理化学特性,认识CO₂注入地下咸水层后的运移规律以 及环境响应,通过突破关键技术,形成适合我国陆相沉积盆地 地质条件的低成本、实用性CO₂封存量评价技术、安全性评价技 术和环境效应监测技术。

场地地质背景

	Geological Periods						Formation	Geological	Rock properties	
	Eon	System	Series	Formation	Section	(m)	(m)	column	descriptions	
		Quaternary		Pingyuan formation		520	520		Yellow-light yellow clay, sandy clay and interbeded silt sandstone	
	. Ce	Ne	Pliocene	Minghua zheng formation		1290	770		Mainly brownish red and dark red mudstone, with thin green sandstone interlayered.	
	nozoic)gene	Miocene	Guantao formation	Ng I	1390	100	·····	Thick, dark green sandstone with interlayered brown mudstone	
					NgII	1420	40		sandstone and mudstone	
					NgIII	1720	290		Mainly dark green sandy mudstone and fine-sandstone, with less gravel	
		Paleo gene	Oligo cene	Dongying formation	Е	1750	30		mudstone and sandstone	
	Legends Clay — Mudstone • • • Fine sandstone • • • Sandstone • • • Gravel									
-	渤海湾盆地北塘凹陷地层柱状剖面图									
cags		China	Aust	tralia G	eolog	ical	Storage	of CO2		
		中》	甪 二	二氯	化石	光 t	也质	封存		

明化镇组:主要为曲流 河一滨浅湖泊沉积体系 沉积。其中细砂岩、含 砾砂岩为曲流河沉积, 砂岩间泥岩为河道间沉 积,粉砂岩及部分泥岩 为河湖沼泽一滨浅湖泊 沉积。

馆陶组:底部含水段底 砾岩为辨状河道沉积。 上下部含水段粉细砂岩 为曲流河沉积。 砂层之间的泥岩为河道 间泛滥平原沉积环境

Minghuazheng formation 明化镇组:可以划分2个3级 层序,分别对应明化镇组1, 2段。14个准层序组和31个准 层序。

Guantao formation 馆陶组:可以划分为1个3级 层序,4个准层序组和10个准 层序。

中

ca

China Australia Geological Storage of CO2

明化镇组下段是曲流河泛滥平原一河湖沼泽相泥岩, 泥岩单层最大厚度一般在15-80米,与上覆第四系层 可形成良好的区域性盖层。

馆陶组发育辫状河和曲流河两类砂岩储层,下段以辫 状河沉积为特征,而上部多为曲流河沉积,孔隙度为 25%以上,渗透率最大可达到4000×10⁻³μm²,平均(15-1400)×10⁻³μm²,属高孔高渗储层。

储、盖层物性特征

馆陶组砂岩储层: 区域上西薄东厚, 自西向 东厚度由350米变化到550 米。沉积旋回明显,分为 馆I粉细砂岩、粉砂岩 段,馆Ⅱ泥岩段和馆Ⅲ砂 砾岩段。 孔隙度: 33.6%-38.7% 渗透率: 1.165-2.003 µ m² or 1150-1980mD

目标储层馆陶组岩芯图

Cas

明化镇组盖层岩性图

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

cags

盖层岩石薄片分析

储层岩石薄片分析

China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

储层及盖层矿物组分分析(XRD)

	Mineral composition %									
Samples	Quartz	Albite	Microcli ne	Biotit e	Chlorite	Smectit e	Others			
Ng-1814m	55	12	6	3	2	_	Hornblende 3			
Ng-1813.78m	60	13	10	3	2 +kaolinite	trace	_			
Nm-1225m	30	13	8	4	4+kaolinite 1	trace	Dolomite 16			
Nm-888m	45	20	10	3	2+ kaolinite	trace	Calcite 15			
Nm-965m	40	19	8	3	3+ kaolinite	trace	Dolomite 10+Calcite 13			

储层及盖层矿物组分分析(XRF)

composition	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	Mn O	Mg O	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	LOI	TOTA L	FeO
samples	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Ng-1814m	76.3 4	0.27	11.13	2.26	0.03	1.09	1.23	2.48	2.73	0.09	1.94	99.59	1.02
Ng- 1813.78m	76.8 2	0.24	10.93	2.09	0.03	1.34	1.32	2.23	2.32	0.06	2.40	99.78	0.95
Nm-1225m	55.0 8	0.67	13.55	5.21	0.08	5.48	4.99	1.58	2.68	0.12	10.52	99.96	2.42
Nm-888m	65.4 3	0.60	13.85	3.83	0.31	1.12	4.04	2.06	3.05	0.13	5.62	100.04	0.31
Nm-965m	65.0 3	0.57	13.21	4.42	0.06	2.07	4.06	2.14	3.04	0.17	5.23	100.00	0.64

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

cag

储层流体特征 Properties of reservoir fluid

现场测定: pH, EC, TDS, Eh, DO, Fe²⁺, Fe³⁺ 实验室测试: ²H, ¹⁸0, ³H, ¹³C, ¹⁴C, ⁸⁷Sr/⁸⁶Sr, 主要离子组分, 微量元素, SiO₂

China Australia Geological Storage of CO2

储层流体水化学特征

水化学类型: 主要为C1·HCO₃-Na型和HCO₃·C1-Na型, 局部地区出现SO₄·HCO₃-Na型水。pH: 7.4-8.6 TDS: 0.7-1.5g/1 储层流体温度: 40-80℃

China Australia Geological Storage of CO2

储层流体氢氧稳定同位素分布图

G

馆陶组储层流体的氧同位素δ¹⁸0有1-1.5%的氧漂移现象,可能是由于存 在古水(24ka B.P.)或者水-岩相互作用。

China Australia Geological Storage of CO2

(CO2质量分数为0.5% (左图)和2% (右图))

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

62

储层对于注入的地球化学响应 Geochemical response to CO₂ injection

水-岩-CO2相互作用实验研究

Batch type autoclave (Parr 4575A)

Ca

Schematic diagram of the autoclave

Max. pressure :	345bar
Max. temperature:	500°C
Volume:	500ml

China Australia Geological Storage of CO2

反应前后粘土矿物等的变化

SEM micrographs of microcline: (a) before reaction; (b) after reaction

SEM micrographs of albite: (a) before reaction; (b) after reaction

SEM micrographs of quartz: (a) before reaction; (b) after reaction

SEM micrographs of biotite: (a) before reaction; (b) after reaction

CO2-水-岩反应的热力学模拟

应用PHREEQC软件,以生产井TR19水样水化学数据和馆 陶组岩芯矿物组分测试结果,模拟不同CO₂含量 (0mmo1,9.68mmo1,14.24mmo1,27.82mmo1,69.92mmo1.196. 8mmo1,分别对应SIco2=-1.75,-1,-0.5,0,0.5,1)注 入到储层后的地球化学响应。

▶ 矿物组分: 石英(40%), 钠长石(10%), 钙长石(9%), 方解石(13%), 白云石(10%), 绿泥石(8%), 云母 (3%)以及 其他矿物如高岭石, 蒙脱石(7%)。

模拟条件: 1kg水溶液, 0.01mo1岩石样, nco2=0 (SIco2=-1.75) 和nco2=27.82mmo1 (SIco2=0) 条件下储层水化学变化特征图

China Australia Geological Storage of CO2

结 论

- ➤ 试验区目标储层馆陶组为砂岩储层, 孔隙度在25%以上, 最大达38.7%, 渗透率最大可达到4000×10⁻³µm², 平均 (1165-2003)×10⁻³µm², 属高孔高渗储层; 盖层为其 上覆的明化镇组下段泥岩层及第四系, 泥岩单层厚度为 15-80m, 区域上广泛分布。
- ▶ 储层流体主要为C1·HCO₃-Na型和HCO₃·C1-Na型水,属于偏碱性流体,pH平均值为7.7,TDS为0.7-1.5g/1,水温为40-80℃,氢氧同位素结果表明储层水来自大气降水,由于存在古水或水-岩相互作用导致地层水有1-1.5‰的氧漂移。

中澳二氧化碳地质封存

Ca

▶ 水-岩相互作用实验表明CO₂注入后,石英和粘土矿物 含量增加,长石含量有所降低,模拟结果表明CO₂注 入后,储层流体中A1,Si,Ca²⁺,Mg²⁺,HCO₃⁻等的含量 显著增加,性质保守的元素如Na+,C1⁻,SO₄²⁻等的变 化不明显,流体的pH值从初始的7.7降为6.3。

▶ 通过试验场地的详细地质描述,充分理解其地质特征 (包括储层和盖层),为下一步的现场注入试验做好 准备工作。

致谢! Acknowledgements

- 国家科技部863计划
- CAGS 中澳二氧化碳地质封存项目

Thank you for your attention

