Source-sink matching

Acknowledgements

Based on research and analysis by

- Peter Neal,
- Minh Ho,
- Yildiray Cinar,
- Olga Bukhteeva,
- Gustavo Fimbres Weihs,
- Dianne Wiley and
- Guy Allinson

of the CO2CRC Economics Group @ UNSW

Outline

- What is source-sink matching?
- Factors affecting matching
 - Choosing sources
 - Choosing sinks
 - Making links
- Conclusions

What is source-sink matching?

Which source(s)?

Which sink(s)?

How to we link them?

What does it look like?

South-East Australia

Fimbres Weihs & Wiley. CO2CRC Annual Research Symposium, 2009.

Jing-Jin-Ji, China

Zheng et al., Front. Energy Power Eng. China 2009, 3(3): 359-368

Decision variables

CO₂ emitted without CCS

CO₂ emitted with CCS

Cost of
$$CO_2$$
 avoided =
$$\frac{PV(all costs)}{PV(CO_2 \text{ avoided})}$$

Cost of Electricity =
$$\frac{PV(all costs)}{PV(Electricity sent out)}$$

Factors affecting source-sink matching

Sources	Sinks	Links
CO ₂ content	CO ₂ content	CO ₂ content
Flow-rate	Flow-rate	Flow-rate
Source type	Areal extent	Distances
Capture method	Formation depth	Onshore or offshore
Source temperature	Formation permeability	Water depth
Source pressure	Formation porosity	Land use
•••	Formation thickness	
	Formation temperature	
	Formation pressure	
	Fracture pressure	
	Injection well type	
	Containment	
	Exploration	

Choosing sources

Factors affecting source-sink matching

CO₂ content affects costs

	Flue gas characteristics		
Source	% CO ₂	Pressure (bar)	
Oil refinery	3% - 13%	<1.5	
Power plant (pulverised coal)	Up to 15%	<1.5	
Cement	20% - 30%	<1.5	
Blast furnace (iron and steel)	20% - 30%	< 5	
Corex (advanced iron and steel)	30% - 45%	< 5	

CO₂ content affects costs

Optimal capture method depends on CO₂ content

Wiley, Ho & Allinson. CO2CRC Annual Research Symposium, 2009.

Choosing sinks

Factors affecting source-sink matching

Permeability affects injectivity and cost

Neal et al., GHGT-8, 2006.

Effect of well type — high flow-rates (15 Mt/yr)

Horizontal Perforated Length (m)

Neal et al., GHGT-8, 2006.

Effect of well type — low flow-rates (1 Mt/yr)

Cinar et al., SPE-108924, 2009.

Effect of exploration uncertainty

Neal et al., CO2CRC Annual Research Symposium, 2009.

Making links

Factors affecting source-sink matching

Schematic CCS network in Central Queensland

Bukhteeva et al., GHGT-9, 2008.

Effect of flow rate — economics of scale

Bukhteeva et al., GHGT-9, 2008.

Effect of flow rate — economics of scale

Allinson et al., CO2CRC Report #09-1536, 2009.

Pipeline length and pipeline sections

Existing roads		Total length (km)	Cost of CCS (A\$/t)
Base Case	9 unequal pipeline sections	895	75.1
Case 1	8 equal pipeline sections	895	76.2
Direct route			
Case 2	6 unequal pipeline sections	720	71.8
Case 3	6 equal pipeline sections	720	71.5

Bukhteeva et al., GHGT-9, 2008.

The island of Ireland

Effect of water depth

Neal, Ho & Allinson, In: Lewis et al. GHGT-9, 2008.

Simple example

Choosing between two sinks

Cinar et al., SPE-114028, 2008.

Closer doesn't always mean cheaper

Cinar et al., SPE-114028, 2008.

Summary

Summary

- Choice of source(s) and sink(s) affected by...
 - Source type, content & conditions
 - Capture method
 - Sink characteristics
 - Geography
- Economic models/optimisation allow
 - all these factors to be combined and
 - choices made using decision variable