

CAGS CCS School: Geological Storage Potential Assessment and Site Selection Methods

Dr. Yujie Diao

Center for Hydrogeology and Environmental Geology Survey China Geological Survey 27th June, 2017 China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

CONTENTS

- 1. 基本术语体系 Definition
- 2. 次盆地级潜力评估方法 Method of mesoscale potential assessment of CGUS
- 靶区地质适宜性评估方法 Method of geological suitability assessment for target selection
- 4. 神华CCS示范场地储层表征与CO2运移规律研究 Reservoir characterization and CO2 migration underground of Shenhua CCS Demo-project

China Australia Geological Storage of CO2

1.1 Definition of CSLF and USDOE

DOE, 2010

Petroleum Industry	CO ₂ Geological Storage		
Reserves	c	Capacity	
On Production	tatio	Active Injection	
Approved for Development	lemen	Approved for Development	
Justified for Development	dml	Justified for Development	
Contingent Resources	ation	Contingent Storage Resources	
Development Pending	teriz	Development Pending	
Development Unclarified or On Hold	Charact	Development Unclarified or On Hold	
Development Not Viable	Site (Development Not Viable	
Prospective Resources	no	Prospective Storage Resources	
Prospect	oratic	Qualified Site(s)	
Lead	Explo	Selected Areas	
Play		Potential Sub-Regions	

_	Prospective Storage Resources				
tion	Project Sub-class	Evaluation Process			
ora	Qualified Site(s)	Initial Characterization			
L x b	Selected Areas	Site Selection			
	Potential Sub-Regions	Site Screening			

1.2 Definition of CGS

- > 区域级预测潜力评价
 National scale Predicted potential
- > 盆地级推定潜力评价
 Basin scale Inferred potential
- 目标区级控制潜力评价

Target scale – Controlled potential

- ▷ 场地级基础储存量评价 Site scale – Basic capacity
- 灌注级工程储存量评价
 Injection scale Project capacity

CGS, 2012

1.3 Differences and similarities

- Evaluated scale of USDOE, CSLF and CGS

- USDOE and CSLF method: the scales are not matched with capacity levels, for one object or scales, evaluated method is effected by technical and economic conditions;
- CGS method: matched, for many objects in national, basin and regional scales, evaluated method is effected by geological survey or research degree. But it is unreasonable of the method of target scale potential assessment.

- The underlying problem of potential assessment for China

- Large number of basins, with different tectonic background and sedimentary environment, even different formations
- Large area, e.g. Ordos basin covers more than 250,000 km2
- Different levels of geological survey and research, including vertical formations.

China Australia Geological Storage of CO2

- Mesoscale for target selection次盆地尺度(宏观尺度)

- Suitable for potential assessment of one basin or the inner regional areas.
- Between basin and site scales which needs more geological survey for CCUS demonstration or industrialization in the short term, generally before 2030 according to carbon reduction target of China.
- Because of the large coverage and complicated geology different from abroad, the methodologies and parameters should be more suitable for geology.
- Without considering the technical and economic conditions.

CONTENTS

- 1. 基本术语体系 Definition
- 2. 次盆地级潜力评估方法 Method of mesoscale potential assessment of CGUS
- 靶区地质适宜性评估方法 Method of geological suitability assessment for target selection
- 4. 神华CCS示范场地储层表征与CO2运移规律研究 Reservoir characterization and CO2 migration underground of Shenhua CCS Demo-project

China Australia Geological Storage of CO2

Methodology for Development of Geologic Storage Estimates for Carbon Dioxide

APPENDIX B

Comparison between Methodologies Recommend Storage Capacity in Geological by the CSLF Task Force on CO₂ Storage Ca and the USDOE Capacity and Fairways Si Regional Carbon Sequestration Partne

- Phase III Report -

Prepared for

U.S. Department of Energy National Energy Technology Laboratory Carbon Sequestration Program

Prepared by

Capacity and Fairways Subgroup of the Geologic Working Group of the DOE Regional Carbon Sequestration Partnerships

August 2008

$$G_{\rm CO_2} = A \cdot h \cdot \varphi_e \cdot \rho_{\rm CO_2} \cdot E_{\rm saline}$$

- A —reservoir distribution area
- h —reservoir thickness
- $arphi_e~$ —saline aquifer average effective porosity
- $\rho_{\rm CO_2} {\rm CO2~density~at~reservoir~temperature} \\ {\rm and~pressure~conditions}$
- E_{saline} —storage efficiency (effective coefficient)

Berndt Wischnewski formula for evluation of CO2 density http://www.peacesoftware.de/einigewerte/co2_e.html

China Australia Geological Storage of CO2

$$V_{E} = A \cdot h \cdot \phi \cdot E$$

$$E_{\text{saline}} = E_{\text{An/At}} E_{\text{hn/hg}} E_{\phi e/\phi \text{tot}} E_{\text{A}} E_{\text{L}} E_{\text{g}} E_{\text{d}}$$

$$E = E_{Geol} \cdot E_{v} \cdot E_{d}$$

▶ E_{Geol} 为地层形貌系数, E_{Geol} =1 if homogeneous reservoir

 E_v 为体积驱替系数, the volume where CO2 is distributed accounts for the total volume of the studied core or reservoir

 E_d 为孔内驱替系数, the volume of injected CO2 accounts for the total porosity in one pore

Parameters for saline formation efficiency.

Term	Symbol	P_{10}/P_{90} values by lithology			Description
		Clastics	Dolomite	Limestone	
Geologic terms used to define the entire basis	n or region pore v	olume			
Net-to-Total Area	E _{An/At}	0.2/0.8	0.2/0.8	0.2/0.8	Fraction of total basin or region area with a suitable formation.
Net-to-Gross Thickness	E _{hn/hg}	0.21/0.76ª	0.17/0.68ª	0.13/0.62ª	Fraction of total geologic unit that meets minimum porosity and permeability requirements for injection,
Effective-to-Total Porosity	$E_{\phi e/\phi tot}$	0.64/0.77ª	0.53/0.71*	0.64/0.75ª	Fraction of total porosity that is effective, i.e., interconnected.
Displacement terms used to define the pore v	volume immediate	ely surrounding a si	ngle well CO ₂ inject	DF,	
Volumetric displacement efficiency	Ev	0.16/0.39ª	0.26/0.43ª	0.33/0.57ª	Combined fraction of immediate volume surrounding an injection well that can be contacted by CO_2 and fraction of net thickness that is contacted by CO_2 as a consequence of the density difference between CO_2 and <i>tn situ</i> water,
Microscopic displacement efficiency	Ed	0,35/0,76ª	0,57/0,64ª	0.27/0.42ª	Fraction of pore space unavailable due to immobile <i>in situ</i> fluids.

a Values from IEA GHG (2009),

G

Saline formation efficiency factors for geologic and displacement terms,				
Esaline - EAn/At Ehn/hg Ede/dtot Ev Ed				
Lithology	P ₁₀	P ₅₀	P ₉₀	
Clastics	0.51%	2,0%	5,4%	
Dolomite	0,64%	2,2%	5,5%	
Limestone	0.40%	1.5%	4,1%	

USDOE

China Australia Geological Storage of CO2

- The US-DOE methodology is based on volumetric methods for estimating subsurface volumes, in situ fluid distributions, and fluid displacement processes.
- The US-DOE methodology could be suitable for potential evaluation of CO2-EWR
- Subsurface storage volume estimates depend on geologic properties (area, thickness, and porosity of formations) and the efficiency of storage (the fraction of the accessible pore volume that will be occupied by the injected CO2). Storage efficiency was determined using Monte Carlo sampling, which includes efficiency terms to define the pore volume that is amenable to geologic storage and displacement terms.

China Australia Geological Storage of CO₂

<u>CO, Geological Utilization and Storage (CGUS) technologies</u> CO2地质利用与封存技术

CGUS	Purpose	Technologies	
CO ₂ Geological Utilization 地质利用 Resources production		Enhanced Oil Recovery, CO ₂ -EOR	驱油
	Energy Due due stier	Energy Enhanced Coal Bed Methane, CO ₂ -ECBM	驱煤层气
	能源增采	Enhanced Gas Recovery, CO ₂ -EGR	驱天然气
	Enhanced Shale Gas Recovery, CO ₂ -ESGR	驱页岩气	
	Recources	Enhanced Geothermal Systems, CO ₂ -EGS	驱热
	production	Enhanced Uranium Leaching, CO ₂ -EUL	驱铀
日本日子》中的一个月间的一个月间。 月前日子》中,一个月间的一个月间。 月前日子》中,一个月间的一个月间。		Enhanced Water Recovery, CO ₂ -EWR	驱水
CO ₂ Geological Storage 地质封存	Saline Aquifers, Depleted Oil & Gas Fields, Unmineable Coal Seams 咸水层,枯竭油气田,不可采煤层		

ACCA21, 2014

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Ge

2.2 Potential assessment of depleted oil fields CO2 storage and CO2-EOR

$$G_{CO_2-EOR} = OOIP/\rho_{oil} \cdot B \cdot E_{oil} \cdot EXTRA \cdot (P_{LCO_2} \cdot R_{LCO_2} + P_{HCO_2} \cdot R_{HCO_2})$$

API = (141.5/S_g)-131.5
以 Where G_{CO_2}-EOR -storage potential of CO₂ by using CO₂-EOR technology; *EXTRA*-the proportion of extra recovery to OOIP (Table 1); P_{LCO_2} -the lowest probability of oil recovery (Table 2); P_{HCO_2}-the highest probability of oil recovery (Table 2); R_{LCO_2}=2.113 t/m³; R_{HCO_2}=3.522 t/m³; S_g-specific gravity; other parameters are the same as formula 2-1.

Table 1 The value of EXTRA with different API gravity

EXTRA (%)	API
5.3	<31
1.3 (API-31) +5.3	$31 \leq API \leq 41$
18.3	>41

Table 2 Four EOR cases with different depth/pressure and API gravity

Depth	API	P _{LCO2} (%)	P _{HCO2} (%)
<2000	>35	100	0
	≤35	66	33
> 2000	>35	33	66
>2000	≤35	0	100

$$G_{\rm CO_2} = G_{\rm CBM} \cdot R_{\rm CO_2/CH_4} \cdot \rho_{\rm CO_2 std} \cdot E_{\rm coal}$$

Table 3 the values of $R_{\rm CO_2/CH_4}$ and C of different types of coal (USDOE, 2003)

Types of coal	$R_{\rm CO_2/CH_4}$	С
Lignite	10	1.00
Non-caking coal	10	0.67
Weakly caking ocal	10	1.00
Long flame coal	6	1.00
Gas coal	3	0.61
Fat coal	1	0.55
Coking coal	1	0.50
Lean coal	1	0.50
Meager coal	1	0.50
Anthracite	1	0.50

Li, 2009

$$G_{\text{CO}_2-\text{ECBM}} = G_{\text{CBM}} \cdot R_{\text{CO}_2/\text{CH}_4} \cdot \rho_{\text{CO}_2 \text{std}} \cdot E_{\text{coal}} \cdot C$$

Table 3 the values of $R_{\rm CO_2/CH_4}$ and C of different types of coal (USDOE, 2003)

Types of coal	$R_{\rm CO_2/CH_4}$	C
Lignite	10	1.00
Non-caking coal	10	0.67
Weakly caking ocal	10	1.00
Long flame coal	6	1.00
Gas coal	3	0.61
Fat coal	1	0.55
Coking coal	1	0.50
Lean coal	1	0.50
Meager coal	1	0.50
Anthracite	1	0.50

Gr

Table 4 Storage efficiency of unmineable coal seams (Goodman, 2011)

P ₁₀	P ₅₀	P ₉₀
21%	37%	48%

China Australia Geological Storage of CO2

	No.	Oil and Gas fields	Depth	OOIP 10 ⁴ t	OGIP 10⁴t
	1	独山子油田	800-1000	239	4.88
	2	克拉玛依油田	200-3000	68276.07	74.06
	3	百口泉油田	440-2379	11013.52	-
	4	风城油田	200-3000	426	-
	5	红山嘴油田	315-2045	4448	1.31
	6	火烧山油田	1200-1700	5756	-
	7	三台油田	1950-2800	157	27.35
	8	北三台油田	2000-2600	1984	-
	9	夏子街油田	1365-1860	2478	44.94
	10	车排子油田	1208-3754	1093	-
	11	乌尔禾油田	1110-1598	1190	-
	12	彩南油田	2200-2450	5058.91	22.72
	13	石西油田	3019-4372	5740	10.95
	14	小拐油田	3353-3520	751	-
	15	沙南油田	1770-2580	2180	-
	16	石南油田	2450-2944	6386	8.24
	17	呼图壁气田	3585	-	126.12
	18	莫北油田	3730-4250	2032	91.73
	19	陆梁油田	1100-2300	7071.36	-
	20	莫索湾气田	4195	582	145.9
50	21	卡因迪克油田	3400-3500	188	-
	22	沙北油田	1420-1520	306	-

ca

Depth	OGIP(10 ⁸ m ³)(<mark>地质储量</mark>)	Coal
1000-1500	11614.6	Non-caking coal
1500-2000	15723.69	Non-caking coal

										3	分级					
									湖	层气	总则	建筑				
			开2										勘查			
2	1.040		-		-	3	地质可靠性 ●									
1							E2	发现的	的					待发现的		
				探	明的)				4	空制	10	推断的	潜在的		
▲——经济可行性	经济的	已产奖经采 未产契託储设能明可量 设能明可量	已开发探明经济可采储量 刺 余 探 明 经 許 可 采 储 量	探明经济可采储量	探明可采储量	探明地质储量	採明经济可采储量	探明可采储量	探明地质储量	控制经济可采储量	控制可采储量	控制地质储量	推断地质储量			
	次经济的													_		
	内壅 经济 的													潜在资源量		
特征	工程	1	开发扌	‡ 194]			+	■米∮	ŧ	4	◎数 ≠	#	探井	没有施工探井,依靠其他 勘探成果综合分析		

First order tectonic units 一级构造单元: 6 Secondary tectonic units 二级构造单元: 44

Hydrogeology 区域水文地质

Geothermal geology 区域地温场

G

China Australia Geological Storage of CO2

Seismotectonics 地震构造

Peak ground acceleration (GB 18306-2015)

China Australia Geological Storage of CO2

Criteria for reservoir selection basically: 储层的必须满足的基本条件:

- 深度 Depth: 800 3500 m
- 岩性 Lithology: clastic rocks, carbonate rocks
- 厚度 Thickness: ≥ 10 m
- <mark>孔隙度 Porosity</mark>: ≥ 5%
- <mark>渗透率 Permeability:</mark> ≥1 mD
- 盖层 Caprocks: regional, generally mudstone and thicker than 20 m
- 活动断裂 Distance from the nearby active faults: > 25 km
- 地震活动性 Peak ground acceleration: < 0.40 g
- 水动力条件 Hydrogeology: not open hydrodynamic area

China Australia Geological Storage of CO2

	地层系统			厚度	厚度 出版 刘 西		* 0	平均	平均	储集	构造	谷地滨仙
	系	组	地层 代号	(m)	岩性剖面 储			北隙度 (%)	渗透率 (10 ⁻³ μm ²)	空间	运动	益 地 演 化
	Q	西域组	Q1x	2478	 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○							准南陆内
		独山子组	N2d		• • • •							前陆盆地 阶段
	Ν	塔西河组	N1 <i>t</i>	2800							喜马拉雅 运动	
23 reservoirs		沙湾组	N1s		•• —•							
	_	安集海河组	E3 <i>a</i>	1100								
	E	紫泥泉子组	E1-2 <i>z</i>	1180				12.7	3.87-127			71 1 73
		东沟组	K2d		· · · · · ·			22.25	110.38			陆内统一 坳陷阶段
Section2 of	к	连木沁组 胜金口组	K1 <i>l</i> K1s	2000				>20	>50	砂	燕山运动 Ⅱ幕	
Songongho	->	呼图壁河组 清水河组	K_1h K_1q		•••			>15 16.29	9.68-607.48 1.47-369.82	岩	まれこう	区初分地
Sangungne-		齐古组	J3 <i>q</i>					>10	3.62-161.99	孔	™山运动 Ⅰ幕	压扭盆地 阶段
formation		头屯河组	J2t		••••			18.35		隙		
Sand-ravel	J	西山窑组	J2x	3600				>10	1-225.04	型为	晚印支	伸展盆地
Saliu-lavel		三工河组	J1 <i>s</i>					>10	1-375.36	主	运动	阶段
rock in the —		八道湾组	J1b					>10	>5			
bottom of		白碱滩组	T3 <i>b</i>					>10	>50			
Qingshuihe	т	克拉玛依组	T2 <i>k</i>	1700							早印支运动	陆内坳陷 阶段
formation	_	百口泉组	T1 <i>b</i>		••••			13.18	16.15-77.12			
cad	C	Chin	a Au	ıstr	alia Geologica	I St	oras	ge of	C02			

- Triassic reservoirs 三叠系储层

Low exploration and research degree

- Jurassic reservoirs 侏罗系储层

- Jurassic reservoirs 侏罗系储层

- Paleogene reservoirs 古近系储层

Ziniquanzi Formation

Φ: 12.47% average K: 3.87-127 mD

CGUS technologies	Potential (Gt)	Credibility
Enhanced oil recovery, CO ₂ -EOR	0.148	Effective, Credible
Depleted oil field CO ₂ storage	1.345	Effective, Credible
Enhanced gas recovery, CO ₂ -EGR	0.009	Effective, Credible
Depleted gas field CO ₂ storage	0.016	Effective, Credible
Enhanced coal bed methane, CO ₂ -ECBM	2.281-5.215 4.02 expected	Theoretical, Less Credible
Unmineable coal seams CO ₂ storage	3.405-7.783 6 expected	Theoretical, Less Credible
CO2-EWR/deep saline aquifers	4.8027-164.093 96.055 expected	Theoretical, Less Credible
中澳二氧化碳地	质 封 存	(Less)

Potential of 2nd sandstone group in section 2 of Sangonghe Formation 三工河二段二砂组主力储层单位面积封存潜力 China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

Potential of sandstones in the bottom of Qingshuihe Formation 清水河组底部砂砾岩主力储层单位面积封存潜力 China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

Total potential of deep saline aquifers CO2 geological storage/EWR

CONTENTS

- 1. 基本术语体系 Definition
- 2. 次盆地级潜力评估方法 Method of mesoscale potential assessment of CGUS
- 3. 靶区地质适宜性评估方法 Method of geological suitability assessment for target selection
- 4. 神华CCS示范场地储层表征与CO2运移规律研究 Reservoir characterization and CO2 migration underground of Shenhua CCS Demo-project

China Australia Geological Storage of CO2

Targets of EOR/EGR/depleted oil & gas fields CO2 storage in mesoscale

China Australia Geological Storage of CO2

G

Geological suitability assessment for CO2-EWR target selection

Level one index	Weig ht	Level two index	Weight	Level three index	Weight	Good	Normal	Poor	Key veto factor
				Lithology	0.07	Clastic	Mix of Clastic and Carbonate	Carbonate	
Decement		Characterist		Single layer thickness h/m	0.11	≥80	30 ≤ h < 80	10 ≤ h < 30	< 10
Reservoir conditions and storage potential	0 50	best reservoir	0.60	Sedimentary facies	0.36	River, Delta	Turbidity, Alluvial fan	Beach bar, Reef	
	0.50	100011011		Average porosity φ/%	0.20	≥15	$10 \le \varphi < 15$	$5 \le \varphi < 10$	< 5
				Average permeability k/ mD	0.27	≥50	10 ≤ k < 50	$1 \le k < 10$	< 1
		Storage potential	0.40	Storage potential per unit area G (10 ⁴ t/km ²)	1.00	≥100	10 ≤ G < 100	< 10	
		Characterist		Lithology	0.30	Evaporites	Argillite	Shale and dense limestone	
		ic of the main caprock	0.62	Thickness h/m	0.53	≥100	50 ≤ h < 100	10 ≤ h < 50	< 10
			0.01	Depth D/m	0.11	<1000	1000 ≤ D ≤ 2700	>2700	
				Buffer caprock above the main caprock	0.06	Multiple sets	Single set	None	
Geological safety	0.50	Hydrodyna mic conditions	0.24	Hydrodynamic conditions	1.00	Groundwater high- containment area	Groundwate r containment area	Groundwater semi- containment area	Groundw ater open area
				Peak ground acceleration	0.50	< 0.05 g	0.05 g, 0.10 g	0.15 g, 0.30 g	≥0.40 g
		Seismic activity	0.14	Development degree of fractures	0.50	Simple	Moderate	Complex	Within 25 km of active

Geological suitability assessment for CO2-EWR target selection

CONTENTS

- 1. 基本术语体系 Definition
- 2. 次盆地级潜力评估方法 Method of mesoscale potential assessment of CGUS
- 靶区地质适宜性评估方法 Method of geological suitability assessment for target selection
- 4. 神华CCS示范场地储层表征与CO2运移规律研究 Reservoir characterization and CO2 migration underground of Shenhua CCS Demo-project

China Australia Geological Storage of CO2

4.1 Guideline for CO₂ geological storage site selection

中神注1井

中神监2井

Jak

٠

I i i

92 . AP 112 3000 4 49 . 140 500 5 . 2.00

計算

// N

100

in a share

T

Cilina Australia Geological Storage of 002 中 澳二氧化碳地质封存

中神监1井

界	系	统	组	地层代号	深度 (m)	柱状 图	厚度 (m)	岩	性	描	述									上部浅红色组	田砂岩
新生	第四系			Q	15		15	黄褐色粘土层、	浅棕色	砂质粘土	层及砂砾石层			上纮	石千	Dach			201	岩互层;中部	部浅约
界	白垩系		东胜一 罗汉洞组	K ^{<i>d</i>-<i>l</i>}	143	囊	128	浅红色细砂岩与	与紫红色 :	泥岩互层			Ξ	上列	峰组	1 557			291	砂质泥岩与? 互层	_步 红色
		中	安定组	J2a	178		35	浅灰色细砂岩为	1主,夹棕约	红色泥岩			-				1986				
	侏	统	直罗组	J2z	253		75	灰绿色泥岩与浅	灰色中细	田砂岩互层		古	登	中统	石盒子	P2sh			247	上部棕红色》 浅红色细砂岩 泥岩与浅红色	尼岩、 岩互
	罗	下						上部以浅灰一 及黑色煤层(深灰色中 8.0m);	P砂岩为: 中部深刻	主, 夹深灰色泥岩 灰色泥岩与浅灰色	」 上	系		组		2233			细砂岩、灰色 泥岩互层	鸟泥 屃
	系	统	延安组	J1y			197	中砂岩互层, 下部浅一灰白	中砂岩互层,夹黑色煤层(6.0m)及炭下部浅一灰白色中砂岩与深灰色泥岩互	m)及炭质泥岩; 色泥岩互层,夹黑	界		下统	山西组	P1 <i>s</i>	2313		80	本组以浅灰4 砂质泥岩与汤	色细和 采灰色	
					450			占床 法(4.0m)	及灰灰山	化石			石炭系	上统	太原组	C2t	2335		26	顶部以黑色煤	、层、
													H UCA	中统	本溪组	C2b	2363		28	灰色泥质砂岩	;、深
中		上纮	延长组	Tau		4	509	上部浅灰色厚, 层;中部以浅	层中砂岩 灰色细砂	告深灰1 岩为主,	色中一薄层泥岩互 , 夹浅灰色中砂岩		奥陶系	中统	马家沟组	O2m	2510		147	本组以褐灰色	白云
		工坑	延氏组	13y	958		508	与灰色泥质砂: 岩与灰白色中: 砂岩呈互层	岩; 下	『深灰色』 「砾细砂」	泥岩、 灰色 砂质 泥 岩、 灰绿 色 含 砾 细			马	家沟	组	: (C1—	Na	•Ca, '	TD
生					,,,,,									7	148.9	94	m	g/L	,		
	[1]	中统	纸坊组	T2z			418	上部深灰一棕: 泥质砂岩、浅; 红、灰绿色泥; 细砂岩互层;	红色泥岩 灰色、砂岩 石砂 板 石砂 板 石砂 板 石砂 板 石 の の の の の の の の の の の の の の の の の の	 ★、灰色 ⇒岩、中 記岩与 〔泥岩与 〔水浅灰1 魚畑砂岩 	砂质泥岩与浅灰色 砂岩互层;中部棕 浅灰色泥质砂岩、 色泥岩砂质泥岩与			石 9:	盒子 510.1	组 38	: C ma	Cl— g/L	Ca	•Na, '	TD
界								12次日把风砂4	口、八家		Ъ.К.			Т	千峰	细	• (<u></u> [_	Ca	•Na. '	$T\Gamma$
	叠				1376	罿						_	,	3	1212	2.34	• • 4 n	ng/	L	114,	
	系	下	和尚沟组	T1h	1574		198	上部浅灰色泥, 岩互层;中部 岩和砂质泥岩 红色、灰绿色4	质砂岩、 以浅红色 ; 下部 田砂岩呈	灰绿色线 组细砂岩炭 红色泥岩 互层	细砂岩与棕红色泥 为主, 夹棕红色泥 岩、砂质泥岩与浅			刘 65	家沟 5111	组 .1	: C 4 n	 Cl— ng/	-Ca L	•Na, '	TD
		统	刘家沟组	T1 <i>l</i>			150	上部以浅红色; 泥质砂岩与棕; 红色细砂岩与; 以浅红色细砂; 和灰绿色细砂;	细砂岩为 红色泥岩 棕红色泥 岩为主,	n主,次	为浅红色细砂岩、 尼岩互层;中部浅 质泥岩互层;下部 色泥岩、泥质砂岩	5	找 tora	」为 ge	」成刀 of CO	k,	7	<u>ि</u> म्	「直	接利	用
				~	1695	>		中渡	ų	氧	化碳	地	」厅	5 :	封ィ	字					

			-	-			
11	上统	石千峰组	P3sh	1986		291	上部浅红色细砂岩与棕红色泥岩、浅红色砂质泥 岩互层:中部浅红色细砂岩、泥质砂岩与浅红色 砂质泥岩、棕红色泥岩互层:下部棕红色泥岩、 砂质泥岩与浅红色细砂岩(灰黑色含砾细砂岩) 互层
	中统	石盒子组	P2sh	2233		247	上部棕红色泥岩、浅红色砂质泥岩、泥质砂岩与 浅红色细砂岩互层;中部灰色砂质泥岩、深灰色 泥岩与浅红色、浅灰色细砂岩互层;下部浅灰色 细砂岩、灰色泥质砂岩与深灰色泥岩、灰色砂质 泥岩互层
	下统	山西组	P1 <i>s</i>	2313	ł	80	本组以浅灰色细砂岩为主,次为灰色泥质砂岩、 砂质泥岩与深灰色泥岩、炭质泥岩互层
4 2	上统	太原组	C ₂ t	2335		26	顶部以黑色煤层、浅灰色细砂岩为主,夹深灰色泥岩
《尔	中统	本溪组	C2b	2363		28	灰色泥质砂岩、深灰色泥岩与黑色煤层呈互层
日系	中统	马家沟组	O2m	2510		147	本组以褐灰色白云岩为主,夹褐灰色泥质灰岩

- ,TDS含量为
- ,TDS含量为
- ,TDS含量为
- ,TDS含量为

Shenhua CCS Demon-project in China VS. Sleipner Project in Norway

4.3 Reservoirs—High resolution sequence stratigraphic analysis

4.3 Reservoirs

Ge

Aquifer groups	Formation	Lithology and namber	Total thickness/m	
5	Bottom of Liujiagou	Sandstone	1	9
4	Upper Shiqianfeng	Sandstone	2	17
3	Middle and lower shiqianfeng	Sandstone	10	56
2	Shanxi—Shihezi	Sandstone	10	85
1	Majiagou	Carbonate rocks	10	36

- 本溪组底部发育的残积成因的铝土质页岩,上石盒子组和石千峰组中 部发育厚度较大的泥岩和粉砂质泥岩,为中间盖层
- 由于示范工程各套储层CO2实施统注,刘家沟组中上部和和尚沟组整体以泥岩和砂质泥岩为主,可作为示范工程有效盖层封隔CO2泄露

China Australia Geological Storage of CO2

4.4 Lithology prediction

Log constrained seismic inversion测井约束地震反演

4.5 Porosity and permeability prediction

Log constrained seismic inversion测井约束地震反演

Porosity prediction

Ca

China Australia Geological Storage of CO2

Permeability prediction

ca

China Australia Geological Storage of CO2

G

• 建模软件: PETREL 2015 Geoscience Core模块

中澳二氧化碳地质封存

• 数据来源: 钻井、测井、地震、实验等解释成果

Cc

Porosity model

China Australia Geological Storage of CO2

Ca

Permeability model

China Australia Geological Storage of CO2

4.7 Numerical simulation

- 模拟软件: ECLIPSE 300 CO2STORE模块
- 数学模型: 达西定律物质-能量守恒方程

4.7 Numerical simulation

Thanks for your attention

No. IN SPACE SHALL PROPERTY IN