CO2 Storage in Saline Formations offshore China: Importance and Potential

中国海域咸水层CO2封存——重要性和潜力

Di Zhou

(South China Sea Inst. Oceanology, CAS)

Oct. 28, 2010

Basins inland Guangdong are small & with low storage capacity

CHINA Stationary CO₂ emissions and basins

Tentative ranking of prospectivity for CO₂ Storage

Higher Prospectivity

Intermediate / unresolved Prospectivity Lower Prospectivity

Bradshaw (2006, Beijing)

Offshore basins are of high prospectivity !

- Large oil/gas-bearing sedimentary basins exist in northern South China Sea;
- This implies large capacity for CO₂ storage in deep saline formations in the vicinity of the large emission sources in the Pearl River Delta.

Preliminary assessment of CO₂ Storage capacity in the Pearl River Mouth Basin

- Area of 20,000 km²
- Cenozoic sediment >500,000 km³
- Oil/gas reserve
 ~3 Gt
- Four sealreservoir assemblages

	Geochronolgy		Lithological strata		es	Sequence Cycles		Sequence	ooding	Relative sealevel	eflector	Pet ge	trole eolo	um gy			
	Age /Ma	Seri	es	Forma- tion	Thic. /m	Litho-histogram	Faci	Indorder	rd order	boundary	Max. flo	NW SE	ieismic Re	Source	eservoir	Seal	
		Quater	nary		200		fal	V	3.9 3.8 3.7	SB 0.2 SB 0.8 SB 1.6 SB 2.4 SB 3.0	0:5 · -1:3 · -2:0 · -2:7 ·				Ŀ		
		Plioc	ene	Wanshan	100 450		c-Shel	IV	3.6 3.5 3.4 3.3	SB5.5 SB63	3:4 - 4:0 - 5:0 - 5:8 -	L la					
			Late	Yuehai	200 600		Neriti		3.2	SB8.2	7.0.						
	10	Ð	dle	www.	500	······	atform	III	2.6	SB10.5 SB12.5	10.0· 11.6·		T2			•	
	15	Miocen	Mid	nanjiany	1100		bonate pla		2.5 2.4 2.3	SB13.8 SB15.5 SB16.5	13.4 15.0 16.0		13 T4		•		
		~	٦ly	76	350		elfal-Carl	II	2.2 2.1	SB17.5	17.0 185			•		•	
	20		Ear	∠nujiang	750		Deltaic-SI		1.5	SB21	· 9· ·		T6		•		
	25 30 35	Oligocene Early Late		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	500 Juhai 1 1100		Coastal	Ι	1.4 1.3	SB 25.5 SB 26.5	24 8· 26.0·	······································					
			1 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					1.2 1.1	SB 28.4 30 Ma	27.5	sion sion Belit					
				600		warm ру					Jepres: u Low H Jepress						
			.ate	Enping	Enping 1400		ustrine-S	TA 4				Zhu I [Pany taiyun [Souther		•		•	
	40			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Laci		Q 3	<u>39.5 Ma</u>			<u>T8</u>				
		ocene	dle	Weeebana	1000 I		strine	TA 3				Sealevel change dashed line is		•		~	
	45	Ш	Mid	wenchang	2000	(Lacu					determined mainly on Coastal Onlap on profile		948			
	50		rly	~~~~~~		mmm			27 - R	49.5 Ma			<u>T9</u>				
			Ea				al-Lacustrine-Alluvial	TA 2				Legend Mudstone					
	55	Paleocene		Shenhu	0 1000					50 5 3.4		Sandstone					
	60		Paleo					ТА 1		IVIA_		Carbonatite					
	65						Fluv			65 Ma			Tg				

Parameters of oil-tested sandstone segments from the wells in eastern PRMB (thickness-weighted averages)

Formation	Porosity (%)	Permeability	(mD)	Net/Gross	# of
romation	Range	Range Ave. Range Ave.		Ave.	ratio (%)	wells
Zhujiang	13.3~23.9	19.9	20.2~2027.9	916.5	92.6	10
Zhuhai	2.3~22.7	16.8	3.5~913	318.0	87.8	11
Enping	0.7~22.0	10.3	0.03~95	7.0	No data	14

Geothermal gradient & CO2 density curves

Effective capacity in saline formations of the Pearl River Mouth Basin

Param	ieter	LM. Miocene	Paleogene	Total
Volume below 80	0m, V (m ³)	187000×10^{9}	164000×10^{9}	
Net/Gross ratio, R		0.5	0.37	
Average porosity,	ϕ	0.2	0.1	
CO_2 density ρ_{CO}	$_{2}(t/m^{3})$	0.3~0.6	0.3~0.6	
	<i>E</i> = 0.01	86	32	118
Capacity (Gt), >800 m	<i>E</i> = 0.024	225	83	308
2000 m	<i>E</i> = 0.04	345	128	473
Capacity (Gt),	<i>E</i> = 0.01	71	10	81
800~2500 m	<i>E</i> = 0.024	184	26	210
	<i>E</i> = 0.04	284	40	324

Effective capacity in oil/gas fields of the Pearl River Mouth Basin

Parameter		Value	Data source		
Resource oil equivalent (Gt)	3.2	2.3	0.9	(MLR, 2008)	
Volume factor (B_0)	1.03	1.03	1.03		
CO_2 density (t/m ³)	0.566	0.566	0.566		
Storage coefficient S_{coeff}	0.25	0.25	0.25		
Capacity (Gt)	0.21	0.15	0.06		

Major conclusions

 If the total emission of from major point sources in Guangdong keeps the 2006 level of <u>160 Mt/a</u> (Bai et al., 2006), and If <u>10%</u> of the effective storage capacity may be used, then the Pearl River Mouth Basin are able to storing <u>190</u> years of those emissions.

- Promising area: Northern Lufeng & Hanjiang sags
- Possibility of source & reservoir clusters.

Case study

- Faulted dome
- Area ~160 km²
- 2 seal-aquifer assemblages
- - ~200 km of Hongkong
 - Capacity to be estimated.

Merits and defects of offshore storage

Merits:

- Saving land;
- No damage to ground water;
- Low environmental impact;
- Easiness in pressure management during injection.

Defects:

• High cost of infrastructure and operation.

Perhaps the only choice for CCS in Guangdong!

