The CO2CRC Otway Project

Presenter Dr Mark Bunch

Ca

Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC)

CAGS Summer School Wuhan, Hubei province, China 3rd November 2010

© CO2CRC All rights reserved

中澳二氧化碳地质封存

The CO2CRC Otway Project – location & concept

CO2CRC Otway Project facilities

China Australia Geological Storage of CO2 中澳二氧化碳地质封存

All rights reserved

(0)

3D layered Earth model

CO2CRC Otway Project: geological model

1005

Onshore drilling rigs CRC-1 Well (Mar 07)

42.9 M Core

Full Suite of Logs

• Gamma ray, neutron, density, resistivity and caliper log

- NMR
- ECS (elemental capture spectroscopy)

CO₂

- FMI (image log)
- Sonic Scanner
- Formation tester
- 3D VSP

662000

Naylor-1 Monitoring well

CRC-1 injection well

X-axs

666000 300m

Facies

tidal fluvial wave re-worked gravel dominated amalgamated channels transgressive sand offshore mud Abandoned channel fill

660000

© CO2CRC All rights reserved

Site characterisation process

- Build detailed reservoir model using current state of the art modelling packages
- History match with actual production data to validate model.
- Predict future trend.

Conceptual model

Observation well

CO₂ accumulation

G

CO₂ Injection well

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

© CO2CRC All rights reserved

00

CO2 CRC

Monitoring the injected CO₂

Measuring the atmospheric concentration of CO₂

Measuring the concentration of CO_2 in the soil

Analysing the groundwater

Measuring the temperature and pressure, recording sound waves and detecting chemical changes

> © CO2CRC All rights reserved

Atmospheric monitoring

Objectives:

To verify that injected CO_2 stays underground; or in the unlikely event of leakage to surface, demonstrate the capacity to detect and quantify surface leakage

Monitoring using CO₂ concentration alone needs ideal conditions, so other species including CH₄,SF₆, CO and ¹³CO₂ are monitored to enhance sensitivity

© CO2CRC All rights reserved

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Soil gas monitoring

Objective:

- Establish CO₂ variations within the extended area beyond the CO2CRC tenements

- Determine the likely source of origin
- Differentiate natural from injected CO₂.

Methods:

- The soil gas program extracts air from the unsaturated soil zone above the water table. - Samples are analysed on site (portable gas chromatograph) and in the laboratory for CO_2 , CH_4 and isotopes.

Frequency

- Baseline: Four surveys
- Once a year during and after the injection

All rights reserved

Ground water monitoring

Objective:

Monitor water levels to determine seasonal variation, flow rate and direction
Identify any chemical changes associated with possible CO₂ leakage

Methods:

- Dataloggers
- Water chemistry
- Aquifers monitored:
- Shallow unconfined Port Campbell Limestone,
- Deep confined Dilwyn aquifer

Example: Wannon Water Bore

Downhole geochemical monitoring

CRC-1 Injection well Naylor-1 Monitoring well

Downhole monitoring

1420 m

• Use of tracers

What should the data tell us?

CO₂ concentration time series from Naylor-1

3D surface seismic monitoring

Objective: to map the migration path of CO_2 plume from injector to producer

Methods: 4D or time-lapse surveys

Repeatability of surveys before, during and after the CO₂ injection is very important for every aspect of acquisition (source and receivers positioning; source signal; hardware; time of year; processing)

中澳二氧化碳地质封存

All rights reserved

Xline 81 – Is this change real/significant?

China Australia Geological Storage of CO2 中澳二氧化碳地质封存

© CO2CRC All rights reserved

Otway Project: stage 1

Structural trapping dominates

> 800m

 \Box

Residual trapping dominates

Residual capillary trapping

Residual CO₂ is left behind because of snap-off as the plume migrates upward. [After Juanes *et al.* (2006) Water Resour. Res.]

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Cc

© CO2CRC All rights reserved

(0))

CO2 CRC

Residual saturation/capillary trapping

- CO₂ can be effectively immobilized by residual trapping - also known as capillary trapping - a process resulting from capillary snap-off of isolated CO₂ bubbles.
- This mechanism does not rely on impermeable cap rock to contain the CO₂.
- Efficient residual trapping in dipping aquifers may allow CO₂ storage where there is not structural closure.
- It is also important to CO₂ migration in general as it reduces the volume of the CO₂ plume.
- Thus it is important to measure and verify the amount of residual trapping in CO₂ storage.

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

All rights reserved

Paaratte (saline) Formation is subhorizontal

Original research objectives/method

- Huff and puff/push pull (300 T)
- Core experiments tied to field observations
- Then larger scale
 injection of up to 10K T
- Repeat logging and 4D seismic monitoring to track plume migration/dissolution

Zone 1 Sequence stratigraphy

Potential for reservoir development

of interest

Zone 2 Sequence stratigraphy

Potential for seal development

CRC-2 drilling, coring, logging

Wireline well logging

5 runs including:

•GR, SP, density, magnetic

resonance, porosity,

permeability

- Comprehensive resistivity suite
- Elemental Capture
- Spectroscopy (ECS)
- Resistivity image log (FMI)
- •Formation fluid tests (MDT)

存

CRC-2 core analysis

CRC-2 core log

• Reveals a similar sequence stratigraphic framework to the conventional interpretation of well logs across the region

• However, the facies distribution interpreted from core suggests a more proximal location on the delta, where sand deposition was more persistent and transgressions not so influential

• Frequent occurrence of tidal laminae maybe result of tidal amplification within the narrow Shipwreck Trough

	Facies				
	Distal mouth bar				
	Proximal mouth bar	Base cas	se, re	ealisatio	on #1:
	Distributary channel		Facies	model	,
	Cement section				
	Delta front				
			_		
			<u> </u>		
	5734000		5733900		
6	58900				658800
¥7	/ /				

Downhole completion at CRC-2

Residual gas saturation test (Otway Stage 2B) CRC-2 Well

Project Summary

- Injection commenced 2 April 2008; total of approx 65K tonnes carbon dioxide was injected.
- Stage 1 cost A\$40M
- Stage 2 may cost A\$20M drilling now complete
- Monitoring & verification a key component
- Learnings include technology, regulation, risk, liability, public interface

CO2 CRC

© CO2CRC All rights reserved

China Australia Geological Storage of CO₂ 中 澳 二 氧 化 碳 地 质 封 存

CO2CRC Otway Project milestones

- March 2007: Drilling of CRC-1
- March 18th 2008: Injection commences in CRC-1. Data includes daily injection rates, surface conditions and downhole pressure and temperature gauges, brought up every six months.
- April 4th 2008: First batch of tracers injected: SF₆, CD₄, Kr
- January 2009: Repeat 3D seismic survey.
- January 15th 2009: Second batch of tracer injected.
- August 28th 2009: Injection stops after 65400 tonnes of gas injected (58400 tonnes of CO₂), and well is shut in.
- December 2009: last lot of downhole gauges brought to surface.
- January 2010: Second repeat 3D seismic survey
- Jan/Feb 2010: Drilling of CRC-2 well for stage 2
- Jan/Feb 2011: Completion of CRC-2
- May-June 2011: Stage 2 experimentation at Otway!

All rights reserved

Acknowledgement

The authors would like to acknowledge the funding provided by the Australian Commonwealth through the CRC Program, and by both industry and state government partners to support CO2CRC research.

Thank you

www.co2crc.com.au

China Australia Geological Storage of CO2

澳二氧化碳地质封存

CO2CRC All rights reserved

CO2CRC Participants

Supporting Partners: The Global CCS Institute | The University of Queensland | Process Group | Lawrence Berkeley National Laboratory

Established & supported under the Australian Government's Cooperative Research Centres Program

