CO2 storage potential and source-sink matching for Guangdong, southern China

广东省陆海二氧化碳封存潜力和源汇匹配研究

Di Zhou, Pengchun Li (South China Sea Institute of Oceanology, CAS) 周蒂、李鹏春 (中国科学院南海海洋研究所) 2011-07-12, 长春

Guangdong is among the most industrialized province in China

- Area 180 000 km², residents 95 million;
- 2008 GDP ~357 b €, #1 in China, among which ~50% comes from industry;

图1 1978-2008年地区生产总值及其增长速度

Guangdong determined to go low carbon, but CCS was not considered

- Low-carbon economy has been included in the "Action Plan for Implementing the <Pearl River Delta reform & Development Plan (2008-2020)>" of the provincial Science and Technology Department.
- However, this is primarily focused on renewable energy development and energy efficiency improvement. CCS is not included.

IGGC power plants are in planning, but CO2 storage was not considered

China Australia Geological Storage of CO2 中澳二氧化碳地质封存

Projects

• **PACOS**: Preliminary Assessment of CO2 Storage Capacity in Guangdong and Offshore (2009)

Funded by: British Consulate-General Guangzhou

 GDCCSR: Guangdong CCS Readiness Study (2010-2013)

— Funded by:

British Consulate-General Guangzhou Global CCS Institute

Project implementers

- South China Sea Institute of Oceanology, CAS, Di Zhou
- Guangzhou Institute of Energy Conservation, CAS, Dai-Qing Zhao
- Energy Research Institute, NDRC, Qiang Liu
- Institute of Rock and Soil Mechanics, CAS, Xiao-Chun Li
- LinksChina Investment Advisory Ltd, Shenzhen, Jia Li
- Edinburgh Univ., Dr. Jon Gibbins
- Cambridge Univ., Dr. Xi Liang

Target of GDCCSR

To promote CCS and CCR in Guangdong through answering the questions of

- If Guangdong needs CCS in her road to low-carbon economy ?
- How can and how much the cost ?

Task 2. Estimate storage capacity inland & offshore GD

- Estimate storage capacity inland GD
 - Sanshui Basin; Maoming Basin
- Estimate storage capacity offshore GD
 - Pearl River Mouth Basin, Qiongdongnan Basin, Yinggehai Basin, Beibuwan Basin
- Identify early opportunities and prospective areas

Basins inland Guangdong are small & with low storage capacity

- Large oil/gas-bearing sedimentary basins exist in northern South China Sea;
- This implies large capacity for CO2 storage in deep saline formations and depleted oil/gas fields.

Preliminary Assessment of CO2 Storage Capacity in Sanshui Basin and Pearl River Mouth Basin

The Sanshui Basin

- A basin of 3400 km² in the Pearl River Delta
- Effective capacity very small (~20 Mtco₂)
- Poor reservoirs: small, low porosity and permeability
 - Chances as test site for technical development

China Australia Geological Storage of CO2

The Pearl River Mouth Basin

- Total area ~200,000 km2
- Maximum sediment thickness >14 km
- The largest basin in N. South China Sea
- Proximal to industrialized areas

Structure and data points

Stratigraphic column

Potential reservoir:

- * M. Miocene Zhujiang Fm.
- * L. Miocene Hanjiang Fm.
- * U. Oligocene Zhuhai Fm.

Co

	Geochronolgy		lgy	Lithological strata		es	Seq Cyc	uence les	Sequence	ooding	Relative sealevel	eflector	Petroleu geolog		um Jy	
	Age /Ma	Seri	es	Forma- tion	Thic. /m	Litho-histogram	Faci	2nd order	Brd order	boundary	Max.fl	nw se Land ∢ ⊳ Sea	Seismic Re	Source	Reservoir	Seal
	0 =	Quater	nary		200		<u>9</u>	V	310 3.9 3.8	SB 0.2 SB 0.8 SB 1.6 SB 2.4	0.5 · -1.3 · -2.0 ·		TO			
onhio		Plioc	ene	Wanshan	100 450		Shelf	IV	3.7 3.6 3.4 3.4	SB 3.0 SB 3.8 SB 4.2	2.7 3.4 4.0	break	T1			
apriic			Late	Yuehai		Neritic-		3.3 3.2 3.1	<u>SB6.3</u> SB8.2	5:8· 7:0-						
mn	10	це	ddle	······ Hanjiang	500 I	••••••	olatform	III	2.6	SB10.5 SB12.5 SB13.8	10.0- 11.6- 13.4-					•
	15	Miocer	Mi		1100		bonate p		2.4 2.3	SB15.5 SB16.5	15.0- 16.0-	der seale			•	
	20		arly	Zhuijang	350 I		Shelfal-Car	II	2.2 2.1	SB17.5	17.0 185	ale vel:	mI.S.n	•		•
			Ш	znajang	750		Deltaic-5		1.5	SB21	. ç		т		•	
servoir:	25	e	.ate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	500 I		astal	Ι	1.4 1.3	SB 25.5 SB 26.5	24 8· 26 0·		mtilin			
huijang Em		IIIII igocen		Zilullai	1100	···}	Cos		1.2 1.1	SB 28.4 30 Ma	27.5		T7			
	30	ō	Early		600		агтру					epress Low Hi epressi Jplift B				
anjiang Fm.	35		te	Enping	 1 400		trine-Swa	TA 4				Chul De Panyu yun De uther l		•		•
Zhuhai Fm.			Lai				Lacus			<u>39.5 Ma</u>		2 Sc	<u>T</u> 8		_	
	40	ene	a		1000		rine					Sealevel change			•	•
	45	Ш	Middl	Wenchang	 2000		Lacust	TA 3				destred line is determined mainly on Coastal Onlap		•		
	50									49.5 Ma		onprome	<u></u>			
			Early				lvial					Legend				
	55	a)			0 		ne-Allu	TA 2				Mudstone				
China Australia Ge		eocen		Shenhu	1000		acustri			58.5 Ma						
中澳二氧化	60	Pal					luvial-L	TA 1								
	65 -						Ē			65 Ma			Tg			

Isopach maps

Isopach of formations below 800m sub-seafloor

116'00'E

150 200 km

Isopach of Lower to Middle Miocene

Below 800 Meters From Seafloor

China Australia Geological Storage of CO2

Thickness (m)

5500-6000

4800-5500

4300-4800

3700-4300

3200-3700

2700-3200

2200-2700

1700-2200

1300-1700

1000-1300

600-1000

300-600

0-300

中澳二氧化碳地质封存

Contouring geothermal gradient based on well data

Capacity assessment for

saline formations of the Pearl River Mouth Basin

Parameter		LM. Miocene	Paleogene	Total		
Volume below 800m $V(m^3)$		187000×109	164000×109			
Net/Gross ratio <i>R</i>		0.5	0.37			
Average porosity ϕ		0.2 0.1				
CO_2 density $\rho_{CO_2}(t/m^3)$		Table 4	Table 4			
Effective capacity (t), >800 m	<i>E</i> =0.01	86×10 ⁹	32×10 ⁹	118×10 ⁹		
	<i>E</i> =0.024	225×10 ⁹	83×10 ⁹	308×10 ⁹		
	<i>E</i> =0.04	345×10 ⁹	128×10 ⁹	473×10 ⁹		
Effective capacity (t), 800~2500 m	<i>E</i> =0.01	71×10 ⁹	10×10 ⁹	81×10 ⁹		
	<i>E</i> =0.024	184×10 ⁹	26×10 ⁹	210×10 ⁹		
	<i>E</i> =0.04	284×10 ⁹	40×10 ⁹	324×10 ⁹		

Effective capacity in oil/gas fields of the Pearl River Mouth Basin

Parameter	Value
OOIP (t)	$0.9 imes 10^9$
Oil density (t/m³)	0.9
Recovery rate R _f	0.5
Volume factor B _f	1.03
CO_2 density (t/m^3)	0.566
Efficiency factor E	0.25
Capacity (t)	$0.06 imes 10^9$

Controlled storage capacity of 60 MtCO2

- Promising area 150~300 km from the Pearl River Delta;
- Promising reservoirs: Lower & Middle Miocene sandstones & limestones

If 10% of the effective storage capacity may be used, then the PRMB has the capacity to store <u>190 year emissions</u> (at 2006 level) from Guangdong.

3. Potential Storage Site

G

LF2G1

- Faulted dome, area ~160 km²
- ~200 km off Hongkong
- Two seal-aquifer assemblages
- Aquifer: delta front & shallow marine sandstone

China Au Data source: CNOOC 22 中澳二氧化碳地质封存

Two Aquifers

	Upper	Lower
Thickness (m)	73.5	120
Net/Gross	0.87	0.84
Porosity (%)	9~30	21~27
Permeability (mD)	80~700	80~700
Seal thickness (m)	>50	6 (??)

Potential capacity >300 Mt

中澳二氧化碳地质封存

Data source: CNOOC

Æ

de

(0)

SE

T40

1250

1500

1750

2000

2250

Shenzhen

Offshore storage vs. onshore

Merits:

- Land saving;
- No damage to ground water;
- Low environmental impact;
- (for China) Good marine facies aquifers.

Defects:

• High cost of infrastructure, operation, and monitoring.

Maturity:

- The maturity of offshore CO2 storage is NOT lower than onshore storage.
- In the world, 3 out of 5 existing large CCS projects using offshore storage:
 - Sliepner, 1 MtCO2/yr since 1996;
 - Snøvit, 0.7 MtCO2/yr since 2008;
 - Gorgen, 3.4 MtCO2/yr to be started in 2014.

(Weyburn, 0.8 MtCO2/yr since 2000) (In Salah, 1.2 MtCO2/yr since 2004)

Offshore CO2 storage is crucial for SE China !

- Chinese offshore basins are of high prospectivity for CO2 storage !
- This matches nicely the large emission sources along the coastal SE China.
- Offshore storage is • perhaps the only hope for CCS in **Guangdong!**

age of CO₂

Early opportunities for CO2 storage Offshore southern China !

- By utilizing existing data, platform and other facilities, the cost of CO2 injection may be greatly reduced.
- Early planning is the key !

