#### Assurance & integrity monitoring at the CO2CRC Otway Project

Presenter Dr Mark Bunch

G

Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC)

CAGS Workshop II Wuhan, Hubei province, China 28<sup>th</sup> October 2010

© CO2CRC All rights reserved



中澳二氧化碳地质封存



## Monitoring the injected CO<sub>2</sub>



Measuring the atmospheric concentration of CO<sub>2</sub>

Measuring the concentration of  $CO_2$  in the soil

Analysing the groundwater

Measuring the temperature and pressure, recording sound waves and detecting chemical changes

> © CO2CRC All rights reserved

#### **CO2CRC Otway Project facilities**



China Australia Geological Storage of CO2

中澳二氧化碳地质封存

© CO2CRC All rights reserved

1005



## **Atmospheric monitoring**

Objectives:

To verify that injected  $CO_2$  stays underground; or in the unlikely event of leakage to surface, demonstrate the capacity to detect and quantify surface leakage



Monitoring using CO<sub>2</sub> concentration alone needs ideal conditions, so other species including CH<sub>4</sub>,SF<sub>6</sub>, CO and <sup>13</sup>CO<sub>2</sub> are monitored to enhance sensitivity

© CO2CRC All rights reserved

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

#### **Atmospheric monitoring**



![](_page_5_Picture_2.jpeg)

## Soil gas monitoring

#### Objective:

- Establish CO<sub>2</sub> variations within the extended area beyond the CO2CRC tenements

- Determine the likely source of origin
- Differentiate natural from injected CO<sub>2</sub>.

#### Methods:

- The soil gas program extracts air from the unsaturated soil zone above the water table. - Samples are analysed on site (portable gas chromatograph) and in the laboratory for  $CO_2$ ,  $CH_4$  and isotopes.

#### Frequency

- Baseline: Four surveys
- Once a year during and after the injection

![](_page_6_Picture_10.jpeg)

![](_page_6_Figure_11.jpeg)

## **Ground water monitoring**

#### **Objective**:

Monitor water levels to determine seasonal variation, flow rate and direction
Identify any chemical changes associated with possible CO<sub>2</sub> leakage

#### Methods:

- Dataloggers
- Water chemistry

#### Aquifers monitored:

- Shallow unconfined Port Campbell Limestone,
- Deep confined Dilwyn aquifer

![](_page_7_Picture_9.jpeg)

© CO2CRC All rights reserved

![](_page_7_Picture_11.jpeg)

#### **Example: Wannon Water Bore**

![](_page_8_Figure_1.jpeg)

## **Downhole geochemical monitoring**

CRC-1 Injection well Naylor-1 Monitoring well

All rights reserved

![](_page_9_Picture_3.jpeg)

![](_page_10_Picture_0.jpeg)

## **Downhole monitoring**

1420 m

![](_page_11_Figure_1.jpeg)

• Use of tracers

![](_page_11_Figure_3.jpeg)

![](_page_11_Figure_4.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

cage

U-tube surface facility (yellow container) above

Isotube sample cylinder - left

Inside the u-tube surface facility - right

![](_page_12_Picture_5.jpeg)

China Australia Geological Storage of CO2 中澳二氧化碳地质封存

![](_page_12_Picture_7.jpeg)

© CO2CRC All rights reserved

(0))

#### What should the data tell us?

![](_page_13_Figure_1.jpeg)

#### **CO**<sub>2</sub> time series from Naylor

![](_page_14_Figure_1.jpeg)

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

© CO2CRC All rights reserved

100

## Other monitoring...

- Microseismic activity, deep and shallow
  - Deep sensors never very satisfactory and have now failed
  - Shallow sensors (water well) record continuing low level of activity but cannot localize source
- Pressure sensors in monitoring well
  - Failed immediately
  - Pressure from injection well is used as a substitute but this was a big loss
- Headspace gas
  - In water wells
  - Regulatory requirement; ill-defined measurement

![](_page_15_Picture_10.jpeg)

![](_page_15_Picture_11.jpeg)

All rights reserved

#### **Downhole seismic monitoring**

![](_page_16_Figure_1.jpeg)

#### **3D surface seismic**

*Objective:* to map the migration path of  $CO_2$  plume from injector to producer

*Methods:* 4D or time-lapse surveys

Repeatability of surveys before, during and after the CO<sub>2</sub> injection is very important for every aspect of acquisition (source and receivers positioning; source signal; hardware; time of year; processing)

![](_page_17_Picture_4.jpeg)

![](_page_17_Figure_5.jpeg)

© CO2CRC All rights reserved

![](_page_17_Picture_7.jpeg)

# Time-lapse studies – CO2CRC Otway Project

![](_page_18_Figure_1.jpeg)

#### Xline 81

Ca

![](_page_19_Figure_1.jpeg)

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

© CO2CRC All rights reserved

100

CO2 CRC

## **Monitoring challenges**

- Technical:
  - Detection and imaging of CO<sub>2</sub> plume in the presence of residual gas
  - Short and long term interactions between CO<sub>2</sub> & residual gas
- Other constraints: (onshore)
  - Seismic acquisition (presence of wells / infrastructure) and repeatability
  - Public perception (visible footprint; impact on pasture land)

![](_page_20_Picture_7.jpeg)

#### **Storage in deep saline formations**

![](_page_21_Picture_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_23_Figure_0.jpeg)

#### **Downhole completion at CRC-2**

Residual gas saturation test (Otway Stage 2B) CRC-2 Well

![](_page_24_Figure_2.jpeg)

## Acknowledgement

The authors would like to acknowledge the funding provided by the Australian Commonwealth through the CRC Program, and by both industry and state government partners to support CO2CRC research.

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

# Thank you

#### www.co2crc.com.au

![](_page_25_Picture_6.jpeg)

China Australia Geological Storage of CO2

澳二氧化碳地质封存

All rights reserved

#### **CO2CRC** Participants

![](_page_26_Picture_1.jpeg)