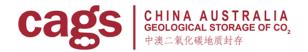



Status of CCUS in China

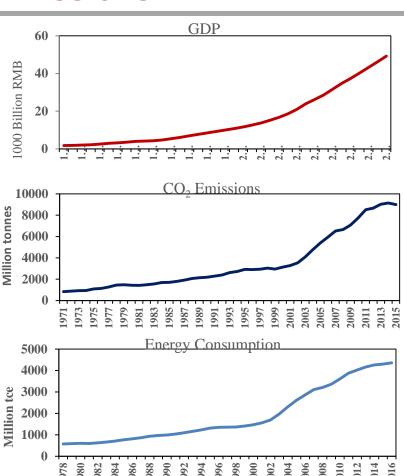
The Administrative Centre for China's Agenda 21,
Ministry of Science and Technology of People's Republic of China

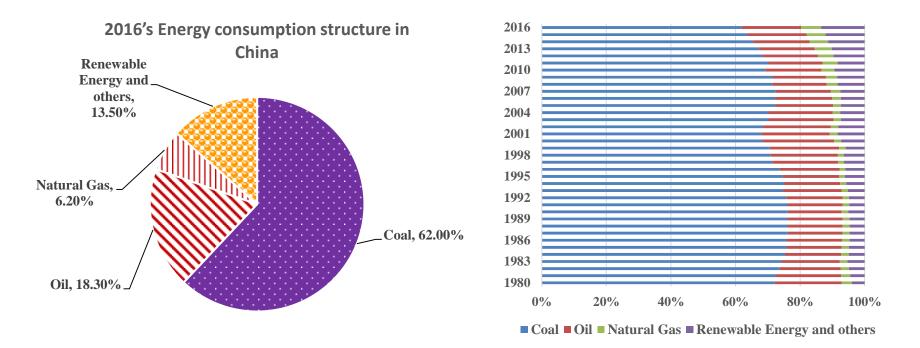
2018. 6. 26


Contents

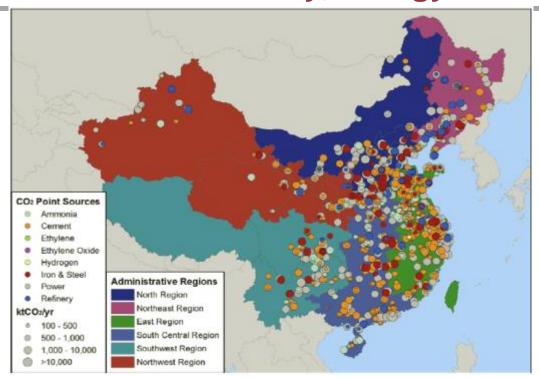
- China's Economy, Energy and Emissions
- Role of CCUS in China
- CCUS Policies and R&D Projects
- Conclusion

1

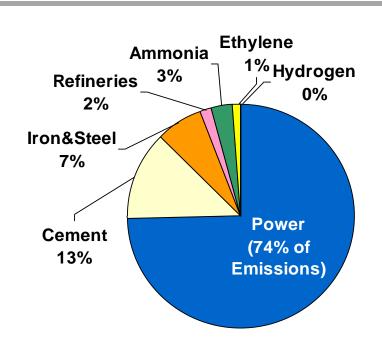

CHINA'S ECONOMY, ENERGY AND EMISSIONS


1. China's Economy, Energy and Emissions

- · During the period of rapid industrialization and urbanization, the GDP from high energy-intensive industries accounted for a big proportion in China.
- \cdot The energy demand increases by 200 million to annually in the recent years.
- · From 1990 to 2015, CO_2 intensity declined by 61%, that is rare all over the world.
- From 1990 to 2015, the GDP grew by 10.7 times, while energy consumption and CO₂ emission increased by 4.4 and 4.1 times.
- · CO_2 emission intensity to drop 40-45% by 2020 according to the 2005 level.

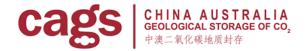

1. China's Economy, Energy and Emissions

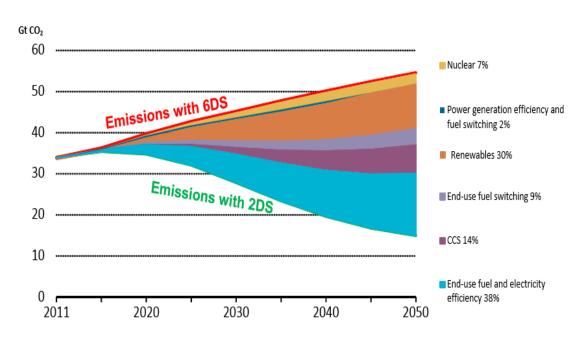


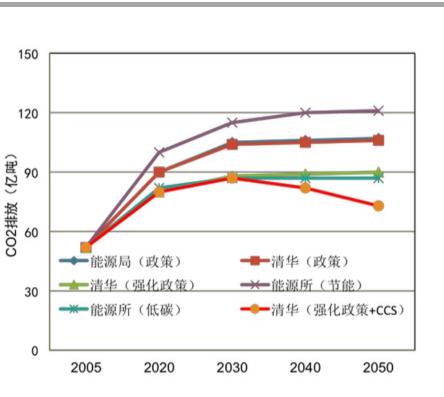

Renewable and nuclear energy development is remarkable, the share of which in primary energy mix keeps increasing, but still could not meet the new incremental demand for energy services in quite a long time.

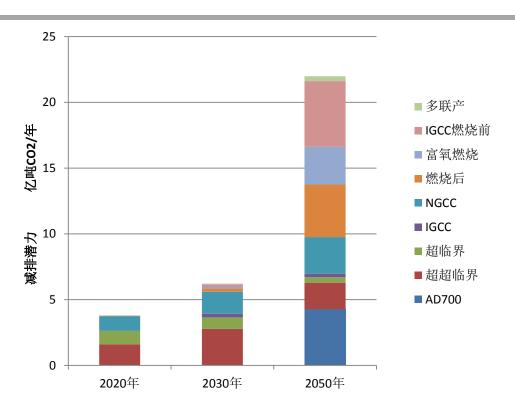
1. China's Economy, Energy and Emissions

Large Industrial CO₂ Emission Sources & Distribution




Industrial CO₂ emissions structure

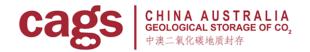

- Power 74%, Cement 13% and Iron & Steel 7%
- The East, North and South Central


ROLE OF CCUS IN CHINA

- IPCC (2014) reports that without CCS, most climate models will not be able to meet the emissions targets. More crucially, without CCS, the cost of reducing emissions will multiply, with an estimated average increase of 138%.
- IEA (2016) reports that achieve the target of no more than 2 °C increase of the global temperature, the scale of CCS deployment needs to reach about 4 billion tons by 2040, and to reach about 6 billion tons by 2050, whereas CCS technology will contribute of carbon emission reduction China wi11 and



- The CO_2 Emission is expected to reach its peak by 2030;
- The carbon Intensity in 2030 will be 60%-65% less than that in 2005.



- Among emission reduction technology options, CCUS is supposed to be the only technology that can actualize low-carbon utilization of fossil fuels in a large scale.
- CCUS is an important technical approach to reduce CO_2 emissions in future, apart from improving energy conservation and energy efficiency, developing new energy and renewable energy, and increasing carbon sinks.

3

CCUS POLICIES AND R & D PROJECTS

3. CCUS Policies and National R&D Projects

- National Medium- and Long-Term Program for Science and Technology Development (2006-2020), by State Council, 2006
- · China's scientific actions on climate change, by MOST, 2007
- · China's CCUS S&T development roadmap, by MOST/ACCA21, 2011
- · 12th National Scientific and Technological Plan on Climate Change, by MOST, May 2012
- · Work plan for 12th 5-year National GHG Control. by State Council, 2012
- · Special Plan for CCUS technology development, by MOST, 2013
- · Notification of Promoting Pilot Demonstrations on Carbon Capture, Utilization and Sequestration, by NDRC, 2013
- Notification on Reinforcing the Environment Protection of the Pilot Demonstration Projects of Carbon Capture, Utilization and Sequestration, by MOEE, 2016
- Technical Guide for Environmental Risk Assessment of CO₂ Capture, Utilization and Sequestration, by MOEE (Trial), 2016

Policies released on a national scale related to CCUS:19 Policies or Guidance Documents aiming at CCUS: 4

General statement

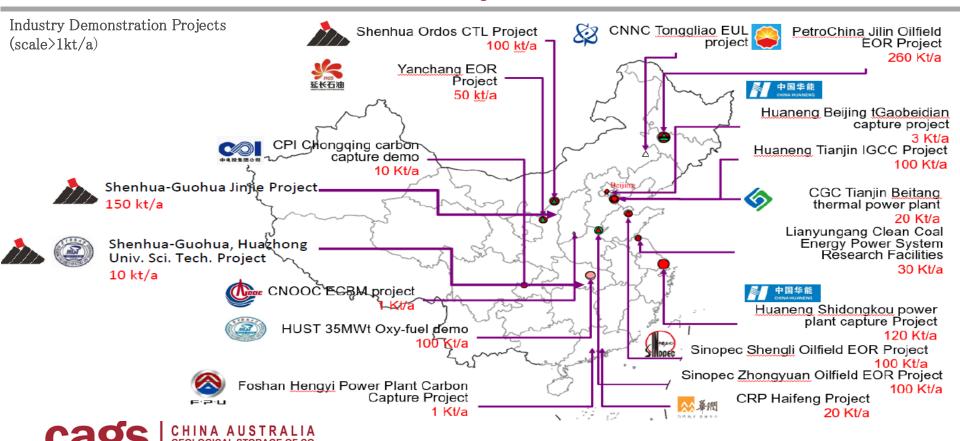
"to develop CO_2 near zero emission technology"

Detailed development measure

Targets, actions in capture, storage, utilization and storage, full-chain demo, etc

3. CCUS Policies and National R&D Projects

3. CCUS Policies and National R&D Projects


Project Title	Funding by	Duration
The Project of CCS-EOR, Utilization and Storage	973	2006-2010
Program of CO_2 Capture and Storage technology	863	2008-2010
The Key Tech Research Program on CCS-EOR and Storage	863	2009-2011
The Key Tech Research Program on CO_2 -Algae-Biodiesel	863	2009-2011
$\mathrm{CO_2-}$ Safety Mining with $\mathrm{CO_2}$ Gas Reservoirs and $\mathrm{CO_2}$ Utilization Tech	National Major Special Project	2008-2010
Demonstration Project of Mining and Utilization Tech of Volcanic gas containing CO_2 in Songliao Basin	National Major Special Project	2008-2010

Name of Projects	Funding by	Duration
Demonstration Project of CO_2 capture and geological storage in Coal Liquification Plant, China Shenhua Group	National Key Technology R&D Programme	2011–2014
The Key Tech Research Project of CO_2 Emission Reducing on Iron–Steel Sector	National Key Technology R&D Programme	2011-2014
Research and Demostration Program of IGCC +CO ₂ Caputure, Utilization and Storage	National Key Technology R&D Programme	2011–2013
CO_2 Storage Capacity Assessment and Demonstration in China	China Geological Survey	2011-2014
The Program of CCS -EOR, Utilization and Storage	973	2011-2015

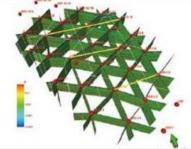
Projects	Funding by	Start Time
Key basic scientific problems based on reducing CO ₂ emission reduction and geologic sequestration	National Key Technology R&D Programme	2016
Key basic scientific problems based on CO2 efficient conversion and utilization	National Key Technology R&D Programme	2016
CO ₂ emission reduction technology of flue-gas microalgae	National Key Technology R&D Programme	2016
High performance absorbent/absorbent materials and techniques for capturing CO2	National Key Technology R&D Programme	2017
The CO ₂ capturing technology with membrane and industrial demonstrations	National Key Technology R&D Programme	2017
Key oxygen enriched combustion technologies of coal	National Key Technology R&D Programme	2018
Chemical chain combustion and gasification technologies of coal	National Key Technology R&D Programme	2018
CO ₂ -EOR technology and the security monitoring of geologic sequestration	National Key Technology R&D Programme	2018
Key technologies for enrichment and separation of coalbed methane in CO ₂ flooding	National Key Technology R&D Programme	2018
CO ₂ mineralization technologies	National Key Technology R&D Programme	2018
Key technologies of highly efficiently synthesizing chemicals with CO ₂	National Key Technology R&D Programme	2018

Source: UK-China (Guangdong) CCUS Center, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2017

China Power Investment, 10,000t/a capture pilot

Huazhong University of S&T (HUST) 35MWt Oxy-fuel pilot,

Huaneng GroupGaobeidian & Shidongkou Power Plant Demo



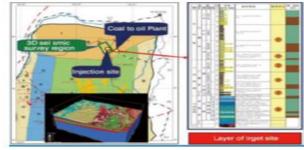
PetroChina CO₂ EOR ,Jilin Oilfield

ENN Group Micro algae Bio-fuel Pilot Capacity: 20,000t/y

China United Coalbed Methane

ECBM Pilot Project

Qinshui, Shanxi



SINOPEC, Shengli Oil Field CO₂-EOR, 1Mt CO₂/year

Shenhua Group Erdos, 3Mt/a

Projects	Partners	Duration
China–Australia Geological Storage of ${\rm CO}_2$ (CAGS)	RET, GA	2010-
China-EU NZEC Cooperation	UK, EU, Norway	2007-
China-EU Carbon Capture and Storage Cooperation (COACH)	EU	2007-2009
Sino-Italy CCS Technology Cooperation Project(SICCS)	ENEL	2010-2012
China-US Clean energy Research Center	MOST, NEA, DOE	2010-2015
CSLF Capacity Building Projects	CSLF	2012-
MOST-IEA Cooperation on CCUS	IEA	2012-



4

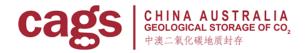
CONCLUSION

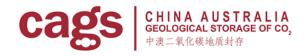


4. Conclusion

CCUS is important to China

CCUS is considered a key technology to develop and promote in mitigating climate change:


- In the long term, it is an important technical option for CO_2 reduction.
- In the short term, it could serve as an important tool to solve energy and resource problems, e.g. enhanced exploration of shale gas, geothermal, saline water and liquid mineral.



4. Conclusion

Improving environment is essential

- Besides technology R&D programs, boosting policies are essential for the take off of CCUS.
- The nature of CCUS technology calls for enhanced international collaboration.

Thank You!

Name: Dr. Xian Zhang

Phone: +86 10 58884888

Email: zhangxian@acca21. org. cn

Address: 8 Yuyuantan South Road, Haidian District, Beijing, P.R.China