

The Studies on Environmental Impact and Risk Management of CO₂ Storage

Dr. Ruina Xu

Department of Thermal Engineering, Tsinghua University

- Case Study: Numerical Simulation on Leakage of Injected CO2 into Overlying Formations through a Leaky Well针对 封存场地中已有废弃井的情况,通过数值模拟方法,研究了 废弃井对CO2地质封存泄露的影响。
 - Develop the simulation method 提出并发展了新的数值模拟方法;
 - Quantities analysis on leakage ratio, Maximum leakage ratio time, leakage rate various with time, etc. 定量分析了泄漏量随时间的变化,初步分析了相关因素对泄漏的影响;
 - Provide technical and data support to risk assessment 为CO2封存风险研究提供了技术和数据支持。

1.1 Leakage through a Leaky Well

Problem 1: CO₂ leakage risk

 CO_2 is injected into the deeper aquifer, spreads within the deeper aquifer and upon reaching the leaky well, rises up to the shallower aquifer.

Problem 1: Governing equation if # * *

Simulated by commercial software FLUENT 6.3 code, Multi-phase model: Eulerian Model .

Continuity equation:

$$\frac{\partial(\varphi S_i \rho_i)}{\partial t} + \nabla \cdot \left(\varphi S_i \rho_i \overline{v_i}\right) = 0, \qquad (i = w, g)$$

where φ is the porosity; S_i is the saturation of phase *i*; ρ_i is the density of phase *i*; v_i is the velocity vector of phase *i*.

Momentum equation:

$$\frac{\partial \left(\varphi S_{i} \rho_{i} \overline{v_{i}}\right)}{\partial t} + \nabla \cdot \left(\varphi S_{i} \rho_{i} \overline{v_{i} v_{i}}\right) = -\varphi S_{i} \nabla P + \nabla \cdot \left[\varphi S_{i} \mu_{i} \left(\nabla \overline{v_{i}} + \overline{v_{i}}^{\mathrm{T}} - \frac{2}{3} \nabla \cdot \overline{v_{i}} \mathbf{I}\right)\right] + \varphi S_{i} \rho_{i} \overline{g} - S_{i} \frac{\mu_{i}}{k_{r,i} K} \overline{v_{i}}$$

Where *P* is pressure, I is the unit tensor, μ_i is the viscosity of phase, *g* is the gravity vector, $k_{r,i}$ is relative permeability, and *K* is the absolute permeability tensor.

Problem 1: model parameters

Dimensions of the model domain $1000 \text{ m} \times 1000 \text{ m} \times 160 \text{ m}$ Aquifer depth $2840 - 3000 \text{ m}$ Aquifer thickness 30 m Aquitard thickness 100 m Porosity 0.15 Radius of leaky and injection wells 0.15 m Distance between wells 100 m Aquifer permeability $2 \times 10^{-14} \text{ m}^2$ Leaky well permeability $1 \times 10^{-12} \text{ m}^2$ Relative permeability $1 \times 10^{-12} \text{ m}^2$ Relative permeability 100% Initial pressure distribution 100% Hydrostatic, gradient of 10251.145 Pa/m CO2 density $k_{r,t} = S_t$)479 kg/m³Brine density 1045 kg/m^3 CO2 viscosity $3.950 \times 10^{-5} \text{ Pas}$ Brine viscosity $2.535 \times 10.4 \text{ Pas}$ CO2 injection rate 8.87 kg/s Simulation time 1000 days	Parameter	Value			
Aquifer depth $2840 - 3000 \text{ m}$ Aquifer thickness 30 m Aquitard thickness 100 m Porosity 0.15 Radius of leaky and injection wells 0.15 m Distance between wells 100 m Aquifer permeability $2 \times 10^{-14} \text{ m}^2$ Leaky well permeability $1 \times 10^{-12} \text{ m}^2$ Relative permeabilitylinearInitial brine saturation 100% Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/m CO2 density $(k_{r,i} = S_i)$ 479 kg/m^3 Brine density 1045 kg/m^3 CO2 viscosity $3.950 \times 10^{-5} \text{ Pas}$ Brine viscosity $2.535 \times 10^{-4} \text{ Pas}$ CO2 injection rate 8.87 kg/s Simulation time 1000 days	Dimensions of the model domain	$1000 \text{ m} \times 1000 \text{m} \times 160 \text{m}$			
Aquifer thickness 30 m Aquitard thickness 100 m Porosity 0.15 Radius of leaky and injection wells 0.15 m Distance between wells 100 m Aquifer permeability $2 \times 10^{-14} \text{ m}^2$ Leaky well permeability $1 \times 10^{-12} \text{ m}^2$ Relative permeability $1 \times 10^{-12} \text{ m}^2$ Relative permeability 100% Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/m CO2 density $(k_{r,t} = S_t)$ 479 kg/m^3 GCO2 viscosity $3.950 \times 10^{-5} \text{ Pas}$ Brine viscosity $2.535 \times 10^{-4} \text{ Pas}$ CO2 injection rate 8.87 kg/s Simulation time 1000 days	Aquifer depth	2840 - 3000 m			
Aquitard thickness100 mPorosity0.15Radius of leaky and injection wells0.15 mDistance between wells100 mAquifer permeability 2×10^{-14} m²Leaky well permeability 1×10^{-12} m²Relative permeability 1×10^{-12} m²Initial brine saturation100%Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/mCO2 density $k_{r,i} = S_i$ 479 kg/m³CO2 density 1045 kg/m³Brine density 1045 kg/m³CO2 viscosity 3.950×10^{-5} PasBrine viscosity 2.535×10^{-4} PasCO2 injection rate 8.87 kg/sSimulation time 1000 days	Aquifer thickness	30 m			
Porosity 0.15 Radius of leaky and injection wells $0.15 m$ Distance between wells $100 m$ Aquifer permeability $2 \times 10^{-14} m^2$ Leaky well permeability $1 \times 10^{-12} m^2$ Relative permeability $1 \times 10^{-12} m^2$ Relative permeability 100% Initial brine saturation 100% Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/mCO2 density $(k_{r,i} = S_i)$ A79 kg/m ³ Brine density 1045 kg/m ³ CO2 viscosity 3.950×10^{-5} PasBrine viscosity 2.535×10^{-4} PasCO2 injection rate 8.87 kg/sSimulation time 1000 days	Aquitard thickness	100 m			
Radius of leaky and injection wells 0.15 m Distance between wells 100 m Aquifer permeability $2 \times 10^{-14} \text{ m}^2$ Leaky well permeability $1 \times 10^{-12} \text{ m}^2$ Relative permeabilitylinearInitial brine saturation 100% Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/m CO2 density $k_{r,i} = S_i$ A79 kg/m³Brine density 1045 kg/m^3 CO2 viscosity $3.950 \times 10^{-5} \text{ Pas}$ Brine viscosity $2.535 \times 10^{4} \text{ Pas}$ CO2 injection rate 8.87 kg/s Simulation time 1000 days	Porosity	0.15			
Distance between wells100 mAquifer permeability $2 \times 10^{-14} \text{ m}^2$ Leaky well permeability $1 \times 10^{-12} \text{ m}^2$ Relative permeabilitylinearInitial brine saturation100%Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/mCO2 density $(k_{r,i} = S_i)$ 479 kg/m ³ Brine density1045 kg/m ³ CO2 viscosity 3.950×10^{-5} PasBrine viscosity 2.535×10^{-4} PasCO2 injection rate 8.87 kg/sSimulation time1000 days	Radius of leaky and injection wells	0.15 m			
Aquifer permeability $2 \times 10^{-14} \text{ m}^2$ Leaky well permeability $1 \times 10^{-12} \text{ m}^2$ Relative permeabilitylinearInitial brine saturation 100% Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/m CO2 density $(k_{r,i} = S_i)$ A79 kg/m³Brine density 1045 kg/m^3 CO2 viscosity $3.950 \times 10^{-5} \text{ Pas}$ Brine viscosity $2.535 \times 10^{-4} \text{ Pas}$ CO2 injection rate 8.87 kg/s Simulation time 1000 days	Distance between wells	100 m			
Leaky well permeability $1 \times 10^{-12} \text{ m}^2$ Relative permeabilitylinearInitial brine saturation 100% Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/mCO2 density $(k_{r,i} = S_i)$ 479 kg/m ³ Brine density 1045 kg/m ³ CO2 viscosity 3.950×10^{-5} PasBrine viscosity 2.535×10^{-4} PasCO2 injection rate 8.87 kg/sSimulation time 1000 days	Aquifer permeability	2×10 ⁻¹⁴ m ²			
Relative permeabilitylinearInitial brine saturation100%Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/mCO2 density $(k_{r,i} = S_i)$ 479 kg/m³Brine density1045 kg/m³CO2 viscosity3.950 ×10-5 PasBrine viscosity2.535 ×10-4 PasCO2 injection rate8.87 kg/sSimulation time1000 days	Leaky well permeability	1×10 ⁻¹² m ²			
Initial brine saturation100%Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/mCO2 density $(k_{r,i} = S_i)$ 479 kg/m³Brine density1045 kg/m³CO2 viscosity3.950 ×10-5 PasBrine viscosity2.535 ×10-4 PasCO2 injection rate8.87 kg/sSimulation time1000 days	Relative permeability	linear			
Initial pressure distributionHydrostatic, gradient of 10251.145 Pa/mCO2 density $(k_{r,i} = S_i)$ 479 kg/m³Brine density1045 kg/m³CO2 viscosity3.950 ×10-5 PasBrine viscosity2.535 ×10-4 PasCO2 injection rate8.87 kg/sSimulation time1000 days	Initial brine saturation	100%			
CO2 density $(k_{r,i} = S_i)$ 479 kg/m ³ Brine density 1045 kg/m ³ CO2 viscosity 3.950 ×10 ⁻⁵ Pas Brine viscosity 2.535 ×10 ⁻⁴ Pas CO2 injection rate 8.87 kg/s Simulation time 1000 days	Initial pressure distribution	Hydrostatic, gradient of 10251.145 Pa/m			
Brine density 1045 kg/m^3 CO ₂ viscosity $3.950 \times 10^{-5} \text{ Pas}$ Brine viscosity $2.535 \times 10^{-4} \text{ Pas}$ CO ₂ injection rate 8.87 kg/s Simulation time 1000 days	CO ₂ density	$\left(k_{r,i} = S_i\right) \qquad 479 \text{ kg/m}^3$			
CO_2 viscosity 3.950×10^{-5} PasBrine viscosity 2.535×10^{-4} Pas CO_2 injection rate 8.87 kg/sSimulation time 1000 days	Brine density	1045 kg/m ³			
Brine viscosity2.535 ×10-4 PasCO2 injection rate8.87 kg/sSimulation time1000 days	CO ₂ viscosity	3.950 ×10 ⁻⁵ Pas			
CO2 injection rate8.87 kg/sSimulation time1000 days	Brine viscosity	2.535 ×10 ⁻⁴ Pas			
Simulation time 1000 days	CO ₂ injection rate	8.87 kg/s			
J	Simulation time	1000 days			

>Lateral boundary conditions: kept constant identical to the initial conditions;

➤Boundaries at the top and bottom of the two aquifers no-flow boundaries;

>All processes are isothermal;

none of the boundary changes over time

Problem 1: Results (1)

Figure Distribution CO₂ saturation on the vertical middle slice

Injected CO_2 spreads in the radial direction from the injection location, comes in contact with the leaky well and rises to the shallower aquifer.

Problem 1: Results (2)

Figure Comparison of predicted CO₂ leakage ratio values over time obtained by different codes

leakage ratio

(ratio of leakage rate to injection rate)

Maximum CO_2 leakage ratio;

➢Maximum leakage ratio time;

≻Leakage ratio after 1000 days of injection;

 \sim CO₂ arrival time at the leaky well (leakage ratio is larger than 5.0 × 10⁻³ %).

computed by different codes						
Code	Max. leakage (%)	Time at max. leakage (days)	Leakage at 1000 days (%)	Arrival time (days)		
FLUENT 6.3	0.221	42	0.113	10		
ELSA (Semi- analytical solution) (Uni Bergen/Princeton Uni)	0.231	63	0.109	14		
COORES (IFP)	0.219	50	0.146	8		
DuMux (Uni Stuttgart)	0.220	61	0.128	6		
ECLIPSE (Schlumberger)	0.225	48	0.118	8		
FEHM (Los Alamos NL)	0.216	53	0.119	4		
IPARS-CO2 (Uni Texas/Austin)	0.243	80	0.120	10		
MUFTE (Uni Stuttgart)	0.222	58	0.126	8		
RockFlow (BGR)	0.220	74	0.132	19		
TOUGH2/ECO2N (BRGM)	0.226	93	0.110	4		
TOUGH2/ECO2N (refined grid) (CO2CRC/CSIRO)	0.212 0.225	46 45	0.115	10 8		
TOUGH2 (RWTH Aachen)	0.227	89	0.112	9		
VESA (Princeton Uni)	0.227	41	0.120	7		

Table Comparison of some interesting values

Problem 1: results(3)

Non-linear relative permeability:

$$\begin{cases} k_{w,r} = S_e^4 \\ k_{g,r} = (1 - S_e)^2 \cdot (1 - S_e^2) \end{cases} \& S_e = \frac{S_w - S_{w,R}}{1 - S_{w,R} - S_{g,R}}$$

 S_e is effective saturation; $S_{w,R}$ is the residual brine saturation; $S_{g,R}$ is the residual gas saturation.

Non-linear relative permeability:
> increases overall resistance;
> enhances the influence of viscous force;
> weakens the buoyancy driven force;
these make the CO₂ front shape more cylindrical than linear rela.perm. case.

Figure Distribution CO₂ saturation on the vertical middle slice

Problem 1: results(4)

Non-linear relative permeability:

$$\begin{cases} k_{w,r} = S_e^4 \\ k_{g,r} = (1 - S_e)^2 \cdot (1 - S_e^2) \end{cases} \& S_e = \frac{S_w - S_{w,R}}{1 - S_{w,R} - S_{g,R}}$$

 S_e is effective saturation; $S_{w,R}$ is the residual brine saturation; $S_{g,R}$ is the residual gas saturation.

Case	Max. leakage (%)	Time at max. leakage (days)	Leakage at 1000 days (%)	Arrival time (days)
Linear relative permeabilit y-saturation	0.221	43	0.113	9
Non-linear relative permeabilit y-saturation	0.142	307	0.123	52

Table Computed esults with different relative permeability relations

Figure Predicted CO₂ leakage ratio values over time with linear relative permeability-saturation or nonlinear relative permeability-saturation

Non-linear relative :

decelerates CO₂ arrival time;
lowers the maximum leakage rate;
lowers leakage rate in the early period;
improves leakage rate in the late period.

