cags

Numerical Simulations For CO2 Storage in Saline Aquifer

Keni Zhang

Beijing Normal University

Long－Term Fate of Stored CO_{2}

Different Storage Modes

1．free gas
2．trapped gas
3．dissolved in brine
4．sequestered as solid minerals
1 ， 2 ，and 3 can be simulated with multiphase flow simulator； 4 can be simulated by reactive transport model．

Source： 2005 IPCC Special Report on Carbon Dioxide Capture and Storage；
http：／／www．ipcc．ch／activity／srccs／index．htm

The simulation technology needed to solve these problems(1)

\checkmark How do the relative proportions of CO_{2} in these different storage modes change over time?
\checkmark How does the evolution of CO_{2} leaks depend on coupling of chemical, mechanical, and thermal effects? What is the fate of leaking?
\checkmark What fraction of subsurface volume can be accessed by CO_{2} ?
\checkmark How is the utilization of subsurface space affected by viscous instability, gravity override and formation heterogeneities?

The simulation technology needed to solve these problems（2）

\checkmark Can CO_{2} leaks self－seal or self－enhance？
\checkmark What is the role of relative permeability and capillary pressure effects in CO_{2} containment and leakage？
\checkmark What is the role of different phase compositions and phase changes in CO_{2} leakage？（supercritical，liquid，gaseous CO_{2} ， dissolved in water）？
\checkmark What is the pressure build up and CO2 plume distribution after CO2 injection？
\checkmark Help for design and analysis of tests．

Simulators for CO_{2} Storage in Saline Aquifers

＞ECLIPSE
\Rightarrow FEHM
\rightarrow GEM
\Rightarrow GPRS
＞TOUGH2
＞STOMP
$>$ Other simulators ：COORES，DuMu， IPARS－CO2，MUETE，RockFlow，RTAFF2
ca
China Australia Geological Storage of CO_{2}
中澳 二氧化碳地质封存
$(0 y)$

TOUGH Family Code For CO_{2} Sequestration

Fluid dynamics：TOUGH2／ECO2N

－Multiphase flows of water／ $\mathrm{CO}_{2} / \mathrm{NaCl}$ mixtures
－Applications to studies of reservoir dynamics，storage capacity， CO_{2} leakage
Geochemistry：TOUGHREACT／ECO2N
－Reactions between gas－aqueous－solid phases
－Study mineral trapping，caprock integrity，natural CO_{2} reservoirs
Geomechanics：TOUGH－FLAC
－TOUGH2 coupled to commercial FLAC3D geomechanics code
－Stress－strain：analyze leakage through caprock and faults
Large Scale Simulations：TOUGH2－MP／ECO2N

China Australia Geological Storage of $\mathbf{C O}_{2}$中澳 二氧化碳地质封存

Computation Challenging

\checkmark Site characterization needs basin－scale model
\checkmark Refined grids are needed for catching CO2 convection
\checkmark Multi－Scale，multiphase flow
\checkmark Complex geochemical reaction and mechanical processes
\checkmark Leakage of CO2 through boreholes，faults，and other high permeability paths（may be non－Darcy flow）
\checkmark THMC coupling simulations

Phase Diagram of CO2 for Numerical Simulations

China Australia Geological Storage of $\mathbf{C O}_{2}$
中澳二氧化碳地质封存

Examples for permeability influences on CO2 storage

Simulation results for a storage site in Western China

Simulation results for a storage site in Eastern China

Example 1：Tokyo Bay Model （from Hajime，Zhang et al．2008）

＞Large－scale injection（several $\mathrm{MtCO}_{2} / \mathrm{yr}$ ）into virgin aquifers would：
－Push large volume of water out of the aquifers．
－Potentially affect subsurface groundwater environment （Pressure，Water Quality）

Lithofacies Analysis

Model

China Australia Geological Storage of CO_{2}中澳二氧化碳地质封存

Hydrogeological Model（1）

Continuous Layer Model

Assume perfect lateral continuity

Sensitivity cases
1．Rock compressibility $\quad 10^{-9} \rightarrow 10^{-8} 1 / \mathrm{Pa}$
2．Permeability of mud layers $1 \rightarrow 10 \mathrm{md}$

China－Australia Geological Storage of CO_{2}
中澳二氧化碳地质封存

Hydrogeological Model（2）

Discontinuous Layer Model

Represents lateral lithofacies changes

Shimosa G．（mud）：kh＝1md

$>$ Geostatistical Unconditional Simulation（10 realizations）
－Lateral lithofacies changes
－Continuity of layers
5km（horizontal）
20m（vertical）

China－Australia Geological－Storage of CO_{2}中澳二氧化碳地质封存

Figure 1．3D grid system（about 10 million gridblocks，only connections are shown）

Hypothetical CO_{2} Injection

- Target aquifer:
- Middle Kazusa Group
- Depth $=800$ to 1000 m
- Supercritical CO_{2}

$$
\begin{aligned}
& \text { e.g.,Density } \sim 0.56 \mathrm{t} / \mathrm{m}^{3} \\
& \text { (at } \mathrm{P}=10 \mathrm{MPa}, \mathrm{~T}=40^{\circ} \mathrm{C} \text {) }
\end{aligned}
$$

- Injection rate:
$1 \mathrm{Mt} /$ year/hole $\times 10$ holes

$$
\text { = } 10 \text { Mt/year }
$$

- Assume CO_{2} injection over a period of 100 years.
- Simulation is performed until 1000 years

Results $-\mathrm{CO}_{2}$ migration－

Results－Head Build－up（1）－
 Change in head with time at urban inlands

Base Case（Continuous Layer Model）

China Australia Geological Storage of CO_{2}中澳二氧化碳地质封存

Results -Surface Discharge -

How much water pushed out is discharged at the surface

Base Case
Discharge occurs in the sea floor and under the boundary of Shimosa/Kazusa G.

Example 2：Dissolution－Diffusion－Convection Process（ Zhang and Pruess 2007）

\checkmark Role of irregular features（geometry， heterogeneity）and 3－Deffects in＂real＂systems？
\checkmark Growth of dissolved CO_{2} inventory．
\checkmark How can the multi－scale nature of the dissolution－ diffusion－convection process be captured in field－ scale simulations？
ca

3D Model

3－D domain for
simulating brine convection induced by CO2 dissolution and associated increase in aqueous phase density． （Xco2＝0．0493 at top boundary）

Random Heterogeneity Field for Triggering Brine Convection

Characterizing DDC Processes

\checkmark Constant dissolved concentration at the interface \checkmark The rate of CO2 entering the system equals to its dissolution rate at the top boundary．
\checkmark The growth of total dissolved CO2 inventory over time
\checkmark Comparison with the case without convection
\checkmark Investigating different random seeds
ca

Dissolved CO 2 concentrations at different times

cags
China－Australia Geological Storage of CO_{2}中澳二氧化碳地质封存

3D Model results

Random permeability influence on CO2 flux at top boundary

Thank you

China Australia Geological Storage of CO_{2}
中澳 二氧化碳地质封存

