Numerical Simulation of Fluid Flow and Geomechanics

Liuqi Wang¹, Humid Roshan² & Rick Causebrook¹, ¹Geoscience Australia ²University of New South Wales

CAGS Summer School II, November 2010

Outline

Introduction

➤Geomechanical properties of Rock

Stress and strain

Coupled simulation of fluid flow and geomechanics

≻Case study

Introduction Full-Physics Compositional Simulation

- Convective and dispersive flow
- Relative permeability hysteresis
- ➤Gas solubility in aqueous phase
- >Aqueous chemical equilibrium reactions
- Mineral dissolution and precipitation kinetics
- ➤Vaporization of H₂O
- Predictions of brine density and viscosity

Leakage through cap rock and thermal capability
China Australia Geological Storage of CO2
中澳二氧化碳地质封存

Cap rock		Possible leakage	
Gas phase	co	2 (g)	Flow
Aqueous phase	CO CO ₂ (aq) + H ₂	↓ ₂(aq) D _ H⁺ + HCO ₃	Flow
Minerals	- Calcite + H*	← Ca ⁺⁺ + HCO ₃	

CMG Training, 2008

Coupled Simulation of Fluid Flow and Geochemical Reaction Material Balance Equation for CO₂

$$\begin{split} &\Delta T_{g} \ y_{CO_{2},g} \ \Delta \Phi_{g} \ + \\ &\Delta T_{w} \left(y_{CO_{2},aq} + y_{HCO_{3}^{-},aq} + y_{CO_{3}^{--},aq} \right) \Delta \Phi_{w} \\ &+ \ r_{x} \ + \ q_{CO_{2}(g)} \ + \ q_{CO_{2}(aq)} \ + \ q_{HCO_{3}^{--}} \ + \ q_{CO_{3}^{--}} \\ &- \frac{V}{\Delta t} \left[\left(N_{CO_{2}} \ + \ N_{HCO_{3}^{--}} \ + \ N_{CO_{3}^{--}} \right)^{n+1} \ - \\ & \left(N_{CO_{2}} \ + \ N_{HCO_{3}^{--}} \ + \ N_{CO_{3}^{--}} \right)^{n} \right] = \ 0 \\ &N_{CO_{2}} \ = \ N_{CO_{2}(g)} \ + \ N_{CO_{2}(aq)} \end{split}$$

Coupled simulation of fluid flow and geochemical reactions through the generation of compositional equation-of-state (EOS), which integrates the important geochemical simulations.

Introduction

➢ Main impact from CO₂ injection:

✓ Higher formation pressure due to CO2 injection

✓CO₂ buoyancy force

≻<u>Risk:</u>

✓ Destabilization of fault

Leakage through cap rocks or wellbore

✓Wellbore instability

Reservoir Characterization

Orientation of minimum and maximum horizontal stress

Magnitude of minimum and maximum horizontal stress, pore pressure

Structural modelling:

Folding and unfolding, deformation, faulting, structural mapping

Geomechanical Property of Rock

>Tension and extension in a rod which is under axial tension and which is unrestricted laterally

Orientation of Max and Min Horizontal Stresses

Pore Pressure, Effective stress and Total Stress

$$\boldsymbol{\sigma} = \boldsymbol{\sigma} + \boldsymbol{\alpha} p \mathbf{I}$$
 (In 3D)

- σ total stress
- σ' effective stress
- p = pore pressure
- α Biot's number

Minimum Horizontal Stress

Post shut-in pressure analysis on mini-hydraulic fracturing data

Extended leak-off test (XLOT)

Vertical Stress

>Overburden stress or vertical stress, σ_v , at depth of D_s , with the average bulk density (*RHOB*, g/cc) and acceleration due to gravity, g:

$$\sigma_{v} = \int_{0}^{D_{s}} RHOB \times gdD_{s}$$

➤Trend line of RHOB:

$$RHOB = Ae^{B \cdot D_s}$$

A and B are the regression constants

Rock Frictional Strength

Rock principal stress vs internal friction:

$$\frac{\sigma_1 - P_p}{\sigma_3 - P_p} = f(\mu) = \left[\sqrt{1 + \mu^2} + \mu\right]^2$$

 σ_1 – maximum principal stress

 σ_3 – minimum principal stress

 P_p - pore pressure

 μ – coefficient of friction

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Normal Fault: $\sigma_v \ge \sigma_H \ge \sigma_h$ $\frac{\sigma_1 - P_p}{\sigma_3 - P_p} = f(\mu) = \frac{\sigma_v - P_p}{\sigma_h - P_p}$ $\sigma_h = \frac{\sigma_v - P_p}{f(\mu)} + P_p$

Strike-slip Fault: $\sigma_H \ge \sigma_v \ge \sigma_h$

$$\frac{\sigma_1 - P_p}{\sigma_3 - P_p} = f(\mu) = \frac{\sigma_H - P_p}{\sigma_h - P_p}$$

> Reverse Fault: $\sigma_H \ge \sigma_v$

$$\frac{\sigma_1 - P_p}{\sigma_3 - P_p} = f(\mu) = \frac{\sigma_H - P_p}{\sigma_v - P_p}$$
Or

$$\sigma_{H} = (\sigma_{v} - P_{p}) \cdot f(\mu) + P_{\mu}$$

Internal Friction for Three Different Faulting Regimes

- **>Normal Fault:** $\sigma_v \ge \sigma_H \ge \sigma_h$
- **>** Strike-slip Fault: $\sigma_H \ge \sigma_v \ge \sigma_h$
- **>** Reverse Fault: $\sigma_H \ge \sigma_v \ge \sigma_v$

➤To further constrain the horizontal stress:

Wellbore breakout angle (FMI, BHTV, etc.)
Rock compressive strength

Example of Pore Pressure and Stress

Well depth (m):	3083.509
Inlination (deg):	0.0
Azimuth (deg):	0.0
Max horizontal stress (MPa):	72.154
Min horizontal stress (MPa):	57.045
Vertical stress (MPa):	69.439
Azimuth of Min-h stress (deg):	343.2
Pore pressure (MPa):	32.439
Poisson's ratio:	0.316
Friction angle (deg):	46.787
Biot coefficient:	1.0
Cohesive strength (MPa):	5.378
Tensile strength (MPa):	2.263

Compressive and Shear Wave Slowness (Well Log Data)

Shear modulus:

 $G = 13474.45 \times \frac{\text{RHOB}}{\text{DTS}^2}$

Bulk modulus:

Kbulk = $13474.45 \times \text{RHOB} \times \left(\frac{1}{\text{DT}^2}\right) - \frac{4\text{G}}{3}$

Poisson's Ratio:

 $v = \frac{3 \times Kbulk - 2G}{6 \times Kbulk + 2G}$

Young's modulus:

$$E = \frac{9 \times G \times Kbulk}{3 \times Kbulk + G}$$

Bulk compressibility:

 $C_b = 1000 \times RHOB \times \left(\frac{1}{DT^2} - \frac{4}{3 \times DTS^2}\right)$

Internal frictional angle:

$$\phi = \phi_{\text{shale}} \cdot \text{VSH} + \phi_{\text{sandsone}} \cdot (1 - \text{VSH})$$

Unconfined compressive strength:

UCS = $1.35 \cdot \left(\frac{304.8}{DT}\right)^{2.75} \cdot VSH + 1200 \cdot e^{-0.0313 \cdot DT} \cdot (1 - VSH)$

Cohesive strength:

$$S_0 = \frac{UCS}{2} \cdot \frac{1 - \sin\phi}{\cos\phi}$$

Tensile strength:

 $T_0 = \frac{UCS}{12}$

Al-Qahtani et al, 2001

*****Static geomechanical property:

Linear regressioned from dynamic property

RHOB = bulk density $\log (g/cc)$

DTS - Shear wave slowness (µµs/ft

DT - compressional wave slowness (µµs/ft

VSH - volume fraction of shale

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Stress Tensor

>Traction Force per Unit (T)=

Unit normal vector (**n**) \times stress tensor (σ) σ33 σ_{31} $\boldsymbol{\sigma} = \boldsymbol{\sigma}_{ij} = \begin{vmatrix} \boldsymbol{\sigma}_{11} & \boldsymbol{\sigma}_{12} & \boldsymbol{\sigma}_{12} \\ \boldsymbol{\sigma}_{21} & \boldsymbol{\sigma}_{22} & \boldsymbol{\sigma}_{23} \\ \boldsymbol{\sigma}_{31} & \boldsymbol{\sigma}_{32} & \boldsymbol{\sigma}_{33} \end{vmatrix}$ **O**32 **0**13 σ23 σ_{11} σ_{21} X3 σ22 σ12 X1 X2 China Australia Geological Storage of CO2 中澳二氧化碳地质封存

Mean & Principal Effective Stress

>Mean effective stress:

$$\sigma_{m} = \frac{1}{3}\sigma'_{ii} = \frac{1}{3}\left(\sigma'_{11} + \sigma'_{22} + \sigma'_{33}\right)$$

Principal effective stress:

$$\sigma_{ij} = \begin{bmatrix} \sigma_1' & 0 & 0 \\ 0 & \sigma_2' & 0 \\ 0 & 0 & \sigma_3' \end{bmatrix}$$

Assume that : $\sigma_1' > \sigma_2' > \sigma_3'$

Constitutive Laws

Linear elasticity: Loading and unloading have the same stress path

Linear Elastic Model

Displacement & Deformation

Changing both the shape and the location:

Strain

► Normal Strain:

Shear Strain:

$${}_{2} = \lim_{\substack{\Delta x_{1} \to 0 \\ \Delta x_{2} \to 0}} \left\{ \frac{\pi}{2} - \angle D'A'B' \right\}$$
$$= \lim_{\substack{\Delta x_{1} \to 0 \\ \Delta x_{2} \to 0}} \left\{ \frac{\pi}{2} - \left\{ \frac{\pi}{2} - \frac{\left(\frac{\partial u_{2}}{\partial x_{1}}\right)\Delta x_{1}}{\Delta x_{1}} - \frac{\left(\frac{\partial u_{1}}{\partial x_{2}}\right)\Delta x_{2}}{\Delta x_{2}} \right\}$$

$$\gamma_{12} = \frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1}$$

$$\varepsilon_{12} = \varepsilon_{21} = \frac{1}{2}\gamma_{12} = \frac{1}{2}\left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1}\right)$$

中澳二氧化碳地质封存

Volumetric Strain

Volumetric Strain = $\frac{\text{change in volume}}{\text{initial volume}}$

$$\mathcal{E}_{v} = \mathcal{E}_{ii} = \mathcal{E}_{11} + \mathcal{E}_{22} + \mathcal{E}_{33}$$

Absolute Permeability

➢Matrix Permeability

- Empirical formula (Li and Chalaturnyk)
- Look-up Table

➢Fracture Permeability

- Barton-Bandis Model (BB Model)

Barton-Bandis Model

- A secondary fracture system is defined in the grid via dualpermeability
- As pressure increase in the regular grid the stresses are altered, causing the normal stresses on the fractures to increase.
- Eventually the Stress breaks past the Failure Envelope of the rock, causing a fracture to appear (open) and allow fluids to pass through.

Loose Coupling Algorithm

Geomechanical Simulation Coupled with Compositional Simulator

Case Study Leakage Risk of Caprock

>Two-way coupled simulation:

- ➢Grid Dimension: 2m×10m (horizontal)
- ≻Grid Number: 500×1×27
- ≻Porosity: 0.18
- ≻Kv/Kh=1
- ≻Sgrm = 0.3
- ≻Injection Well: (3, 1, 1)
- ≻Perforation Interval: (3, 1, 25) to (3,1, 27)
- ≻Injection Rate: 1×10⁴ m³/day (STG surface gas rate)
- ➢Injection Period: 2000-1-1 to 2003-1-1
- ➢Simulation Period: 2000-1-1 to 2200-1-1

Permeability Model

Total Cum Inj, mol = 4.65464E+08 CO2 Storage Amounts in Reservoir Gaseous Phase Supercritical Phase Trapped due to Hysteresis Dissolved in Water

Summary

Coupled numerical simulation of fluid flow and geomechanics is based on the detailed reservoir characterisation of structure, petrophysical property and geomechanical property, ect.

Coupled simulation can improve our understandings of both movement of CO2 plume and change of geomechanical pattern.

Besides the effective storage capacity assessment, the coupled simulation can provide the risk information of leakage.

