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Outline

* Why do numerical modelling?
* Physics of simulation

* Philosophy of model building
* Practical limits to simulation

» Upscaling

* Recent developments
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Why do numerical modeling?

 Data is expensive to collect, which justifies
considerable effort to extract the best value
from it.

e Data is scarce and limited in resolution and
scale, so it needs to be “extended”

* Projects are expensive and risky, so
numerical modelling is needed to explore
uncertainty and reduce risk.

oooooooooooooooo
[0O00000000000000C 3
000000000000 000 [e
000000000000 000C
oooooooooooooo Q

The dangers of simulation

“If you do it too much, you come to believe
that it's the real thing”

» Simpler techniques may be sufficient to
address the objectives.

» Complicated is often equated to better,
especially in a multi-disciplinary workflow.

* Pictures are a great communication tool, so
simulations based on inadequate data and
poor methodology still look good!
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The physics of simulation

The key governing equations are:
* Mass and energy conservation
 Transport law (e.g. multi-phase Darcy's law)

* Fluid equations of state: CO ,, brine, other
gases

These have to be supplemented by initial
conditions, boundary conditions and source
terms (wells).
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What physics is missing?

The software will not include all the physics e.g.

 Darcy’s law starts to break down at high flow rates
as can occur in some gas wells. An additional term
then needed in the flow equations

» Hydrodynamic dispersion (along and normal to the
direction of flow) is often neglected This is usual
much larger than molecular diffusion.

» Wellbore storage effects may be absent unless a
well model is included in the simulation.
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Philosophy of model building

Define your objectives first!

* What questions are you trying to answer with the
simulation?

» How accurate an answer do you need?

* What limits are there to time/resources for the
simulation study?

* How much data is there to base a model on?

J0oO 0 000 O
0000000
jooooo000
0O 00000

(@]

&

First kind of objective

Research questions e.g. How does the
hydrodynamic gradient affect CO , migration?

* These are often based on relatively small amounts
of representative data.

* Realism is not important, so significant
simplifications can be made.

* There may be a way to compare to another
theoretical treatment
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Example of a research question:
convection of dissolved CO
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Second kind of objective
Make technical prediction in a site-specific contex tto
support decisions e.g.
* How much CO , can be stored? How should it be
monitored? What are the risks?
« Data may be sparse (high-level site assessment) or
relatively abundant (commercial prospect or deplete d
field).
« Small models may be adequate, but will likely lead
to full-field 3D as data becomes available
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Example:Timing of vertical migration of CO
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Seek understanding!
“The purpose of computing is insight, not numbers”
Richard Hamming.
» Simulations can produce vast quantities of data,
and beautiful pictures.
« You should NEVER rely on results you don’t
understand
» The hardest part of simulation is to develop an
intuition for the physical processes. You need a go od
understanding of reservoir engineering and the
physics of multiphase flow in porous media.
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Small is beautiful?

Models should be fit-for-purpose:
* Resist the “one big model” temptation.

» Multi-disciplinary workflows encourage big
models if you can’t easily iterate.

» Early models should be small so you can run a lot
of them, and investigate sensitivities.

» Mature models (with field data) should be bigger,
but still allow for a suite of models.
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Practical limitations

To solve the governing equations requires:
« discretization in space — splitting the domain
up into gridblocks
« discretization in time — advancing in finite
timesteps.

This has a series of consequences
* limitations on size
* numerical artifacts
* upscaling and resolution of data
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Size limits
Call the number of equations n (= number of
gridblocks times number of mass components)

» The memory requirements are proportional to n

» The CPU time scales between n 1>and n2. Single
CPU allows ~10 ° blocks. Parallelism helps but still
limited to millions of blocks.

¢ Field-scale models are coarse: 10-50m blocks width
iSs common.
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Numerical Artifacts

« Orientation effects e.g. fluid flow is easier along grid
axes rather than diagonally across them

* Numerical diffusion is proportional to v At where v
is the flow velocity. This can be more significant than
real physical diffusion or dispersion.

* Local equilibrium assumed in each gridblock. Thus
during the injection phase, the amount of dissolved
CO, will be overestimated. This can be corrected for:
Green and Ennis-King, (2012) Comput. Geosci. 16:
1153-1161
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Effect of grid refinement on CO , dissolution
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Upscaling of data

Each grid block only has one value for porosity,
permeability, saturation, composition etc. This has
two important consequences:

* we cannot resolve anything in the results below the
size of a grid block.

« geological data measured on different scales e.g.
core data, has to “upscaled” or averaged in an
intelligent way.
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Example of permeability upscaling

Issue is what to preserve
with the upscaling:

175616 cells

 average migration speed?
* breakthrough time?

* plume shape?
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Vertical permeability

- Due to the density difference between CO , and
water, vertical migration is important except in th in
reservoir or for short times.

 Deep injection schemes rely on tortuosity of
migration paths — two phase model can use object
modelling of barriers.

* It's common to characterize through the ratio
k,/k,, where k , Is vertical perm and k |, is horizontal
perm. “Default” often k  /k,, =0.1

G00000000000000
000000000000000 .
000000000000000 -\
000000000000000 20 CO2 CRC
000000000000000

000000000000000 \

00000000000 fo¥e)

5/5/2014

10



Vertical permeability
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Upscaling of relative permeability

Core-measured properties aren’t always
appropriate for grid blocks thicker than the
capillary transition zone.

A variety of schemes exist to make this upscaling
correction:

« analytic (vertical equilibrium) — tend to straighten
the rel. perms.

* “dynamic” — rely on matching fine scale cross-
section simulations to coarser ones
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Geostatistics

- Fine scale data (e.g. porosity and permeability) is
only available at wells.

» Geostatistics fills in everything else, based on
estimates of correlations (variograms).

» Don’t put too much faith in nice pictures
» Don’t trust a single realisation

» Gridding should follow geological features
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Be nice to geologists on your team

- The building of the geological model requires
significant time and effort, even for simple models

* Good communication requires understanding of
geological terms and their implications e.g.
depositional environments.

* It's very desirable to be able to iterate!

» Simulation efficiency must be balanced against
faithfulness to geology
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Software for simulation

Large variety of choices

» Commercial codes: Eclipse, GEM, Tempest, MoReS
etc

* Research codes: TOUGH (LBNL), GPRS (Stanford),
PFLOTRAN (LANL), STOMP (PNNL), VESA
(Princeton), NUFT (LLNL), etc

* Open source codes: DUMUX, OPM

See Class et al. (2009). A benchmark study on
problems related to CO , storage in geologic
formations. Comput. Geosci., 13(11), 409-434.
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Example: Code comparison results

TOUGH2 (CO2CRC)

i

MUTFE (Stuttgart)

'

200 so0 600 800 10000

ECLIPSE (Schl) GEM (HW)

GPRS (Stanford) MoResS (Shell)
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Directions in numerical simulation

Focus on more coupled problems and additional physi cs

e Chemical reactions coupled to multiphase flow (e.g.
TOUGHREACT, NUFT)

» Wellbore coupling issues (e.g. T2well)

e Tracers

Focus on field projects and monitoring

» Interpreting monitoring data (e.g. P/T gauges)

» Designing monitoring e.g. seismic forward modeling

» Geomechanics coupled to multiphase flow (e.g. TOUGH/  FLAC)
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