

The Potential of CO₂ geological utilization and storage in the Junggar Basin

Dr. Yujie Diao

Center for Hydrogeology and Environmental Geology Survey, China Geological Survey June 26, 2018 · Perth

O CO₂ emissions in the Junggar Basin

Mesoscale potential of CGUS in the Junggar Basin

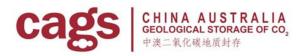
Source - storage matching and early opportunities

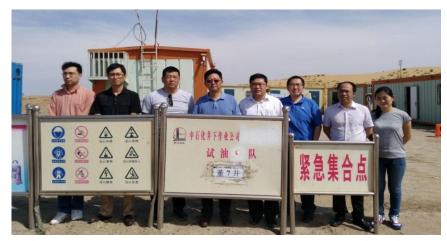
Prefeasibility study of CO₂-EWR in D7 well site

1

RESEARCH PROJECT INTRODUCTION

- China - Australia Geological Storage of CO₂ – CAGS3


Finished by:

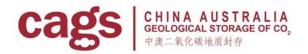


Center for Hydrogeology and Environmental Geology Survey, CGS

Institute of Rock and Soil Mechanics, Chinese Academic of Sciences



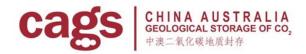
Field visit in June, 2016



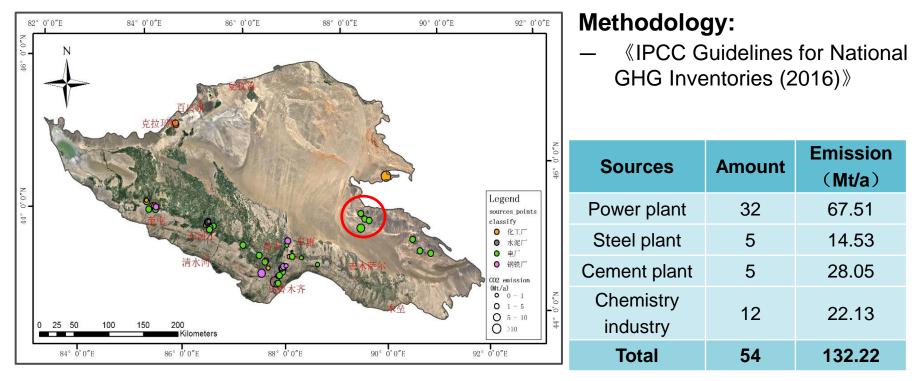
Project start-up workshop in July, 2016

CGS and AUGSs meetings during China Mining Congress in Sep., 2016 and Sep., 2017

2D seismic exploration in 2016



Drilling and reservoir test in 2017



2

CO₂ EMISSIONS IN THE JUNGGAR BASIN

2. CO₂ emissions in the Junggar Basin

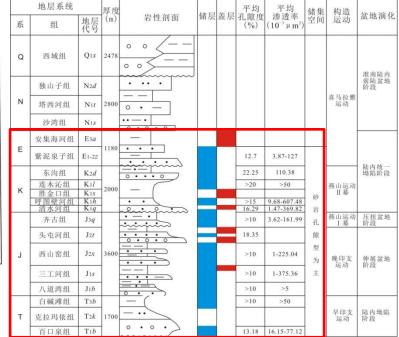
3

MESOSCALE POTENTIAL OF CGUS IN THE JUNGGAR BASIN

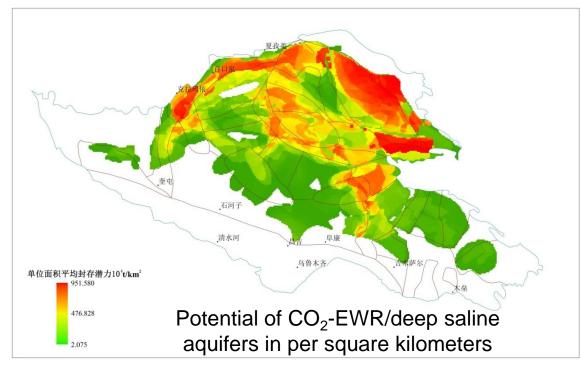
CO₂ geological utilization and storage, CGUS

CGUS	Purpose	Technologies	
CO ₂ Geological Utilization	Energy Production	Enhanced Oil Recovery, CO ₂ -EOR	
		Enhanced Coal Bed Methane, CO ₂ -ECBM	
		Enhanced Gas Recovery, CO ₂ -EGR	
		Enhanced Shale Gas Recovery, CO ₂ -ESGR	
	Resources production	Enhanced Geothermal Systems, CO ₂ -EGS	
		Enhanced Uranium Leaching, CO ₂ -EUL	
		Enhanced Water Recovery, CO ₂ -EWR	
CO ₂ Geological Storage	Saline Aquifers, Depleted Oil & Gas Fields, Unmineable Coal Seams		

ACCA21, 2014


Reservoir selection for potential assessment

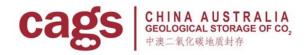
- Depth: 800 3500 m
- Lithology: clastic rocks, carbonate rocks
- Thickness: ≥ 10 m
- Porosity: $\geq 5\%$
- Permeability: ≥1 mD
- Caprocks: regional, generally mudstone and thicker than 20 m
- Distance from the nearby active faults: > 25 km
- Peak ground acceleration: < 0.40 g
- Hydrogeology: not open regional hydrodynamic areas

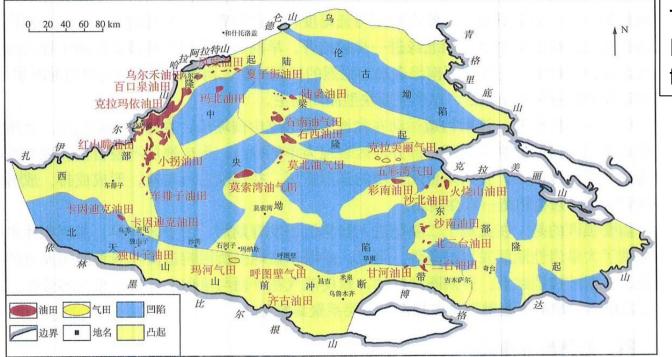


Geostructure

23 reservoirs

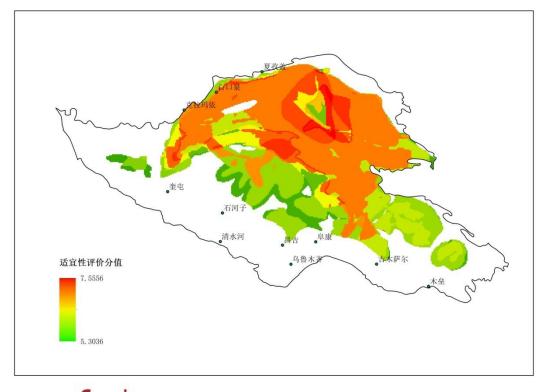
USDOE Methodology


$$G_{\rm CO_2} = A \cdot h \cdot \varphi_e \cdot \rho_{\rm CO_2} \cdot E$$


CGUS technologies	Potential (Gt)	Credibility
Enhanced oil recovery, CO ₂ -EOR	0.15	Effective, Credible
Depleted oil field CO ₂ storage	1.35	Effective, Credible
Enhanced gas recovery, CO ₂ -EGR	0.01	Effective, Credible
Depleted gas field CO ₂ storage	0.02	Effective, Credible
Enhanced coal bed methane, CO ₂ -ECBM	2.28-5.215, 4.02 expected	Theoretical, Less Credible
Unmineable coal seams CO ₂ storage	3.41-7.78, 6 expected	Theoretical, Less Credible
CO ₂ -EWR/deep saline aquifers	4.8-164.09, 96.06 expected	Theoretical, Less Credible

SOURCE - STORAGE MATCHING AND EARLY OPPORTUNITIES

4. Source - storage matching and early opportunities

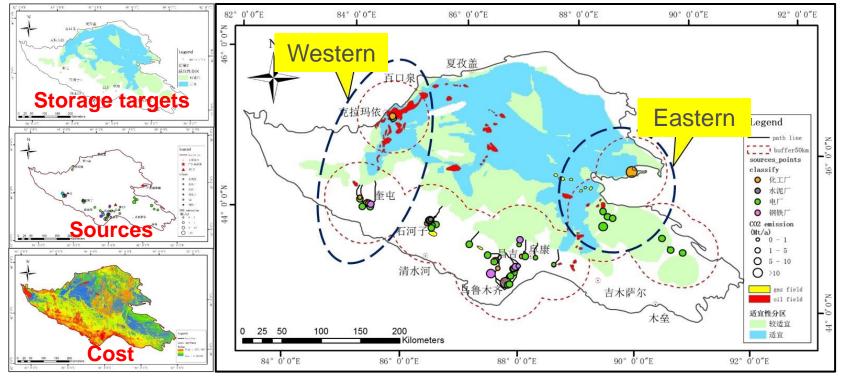


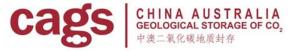
GE OF CO.

Ca

Targets for CGUS: Existing oil and gas fields

4. Source - storage matching and early opportunities




$$P = \sum_{i=1}^{n} P_i A_i (i = 1, 2, 3, \dots, n)$$

High suitable: 40,581 km² Suitable: 34,876 km²

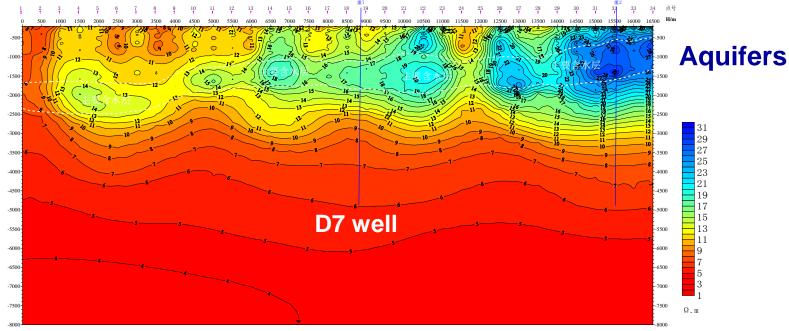
Targets for CO₂-EWR / deep saline aquifers


4. Source - storage matching and early opportunities

5

PREFEASIBILITY STUDY OF CO₂-EWR IN D7 WELL SITE

Google earth


CHINA AUSTRALIA GEOLOGICAL STORAGE OF CO₂

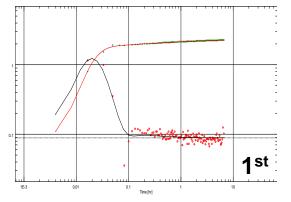
Ca

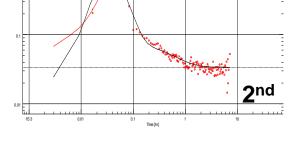
- D7 well, an abandoned well of SINOPEC
- Co-funding: Geological survey project of CGS

14

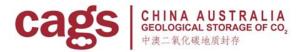
5. Prefeasibility study of CO₂-EWR in D7 well site Magnetotelluric (MT)

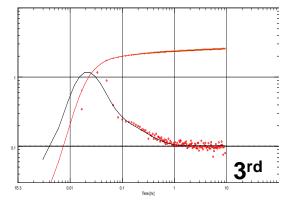
GEOLOGICAL STORAGE OF CO.


Electrical resistivity

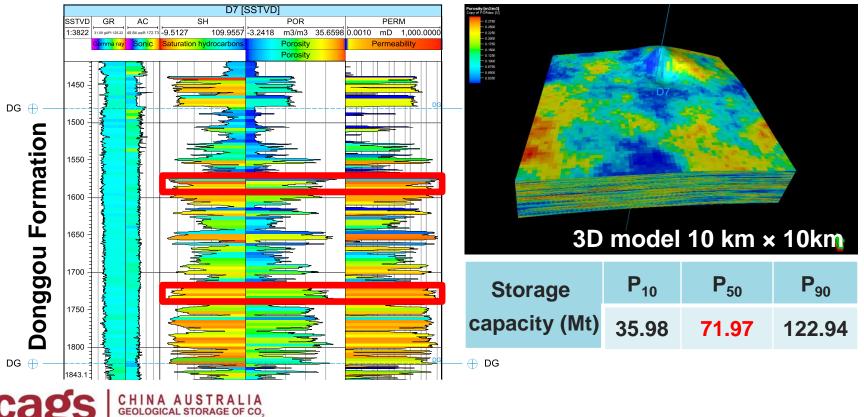

2D seismic exploration

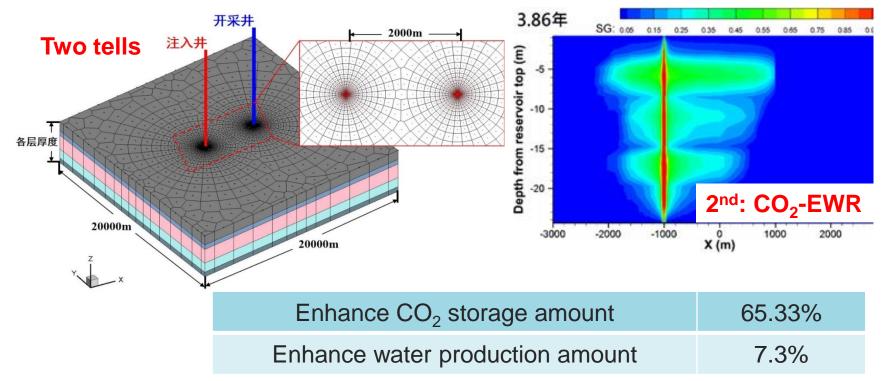
	Reservoirs ✓ 2038-2065	
	✓ 2246.5-2265	
	✓ 2392-2407	
F3		
	F2	

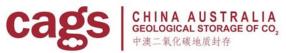

Reservoir downhole test

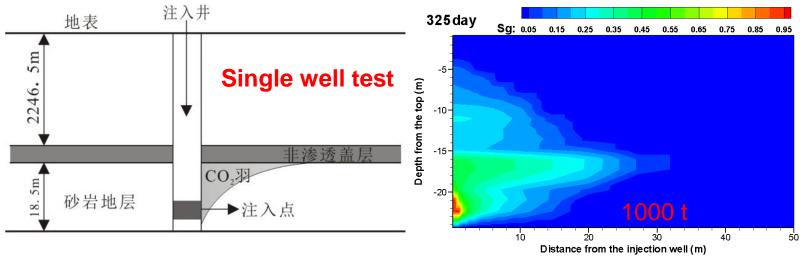

Log-Log plot: p-p@dt=0 and derivative [MPa] vs dt [hr]

Influence radius: 55.5m K: 1.68mD

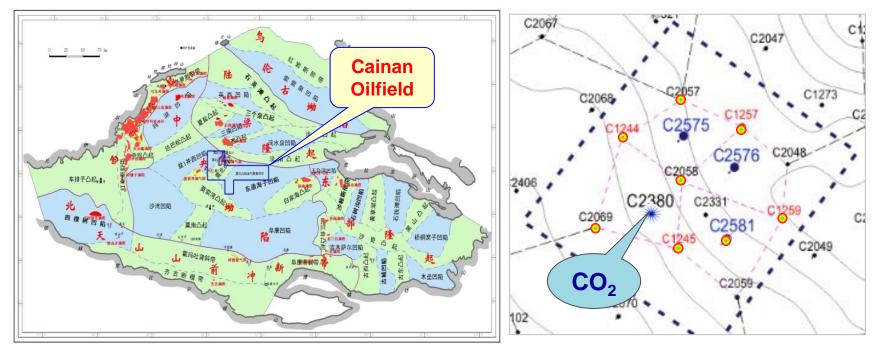

Influence radius: 192m K: 18.9mD


Log-Log plot: p-p@dt=0 and derivative [MPa] vs dt [hr]




Log-Log plot: p-p@dt=0 and derivative [MPa] vs dt [hr]

Influence radius: 138m K: 7.47mD



- Pull enough formation liquid and test the reservoir permeability; Inject the formation liquid back into reservoirs, test pressure response
- Inject CO₂ into the reservoirs, test the pressure response and reservoir injectivity
- Pull back the liquid including CO₂ and saline, to test the pressure response and tracers, CO₂ - water reaction

Multi-wells EWR

Cainan Oilfield

Thank you

Name: Yujie Diao

Phone: +86 15231272983

Email: diaoyujie1983@163.com

Address: Qiyi Middle Road, Baoding City, Hebei Province, China