二氧化碳地质储存中的反应溶质运移 数值模拟

Reactive Transport Modeling for CO2 Geological Sequestration

许天福(Tianfu XU) 吉林大学(Jilin University) 劳伦斯伯克利国家实验室研究员 (LBNL ,Berkeley, California 94720, USA) Tianfu.good@Gmail.com

Issues Can be Addressed by Reactive Transport Modeling反应溶质运移模拟可以解决的问题

- Changes in groundwater quality induced by CO₂ injection (storage formation and shallow aquifers) 由CO2注入引起的地下水水质变化(储层和浅部含水层)
- What is the long-term fate of injected CO₂? 注入的CO2最终归宿?
- What is the long-term fate of injected CO₂? 注入的CO2最终归宿? What fraction of CO₂ is stored as a free phase (mobile or trapped), dissolved in the aqueous phase, What fraction of CO₂ is stored as a free phase • or sequestered in solid minerals?
 - 注入的CO2以不同形式被封存的比例?
- How do the proportions in these different storage • modes change over time?
 - 不同储层形式随时间的变化?
- Is co-injection with H₂S feasible?与H2S共同注入是否 可行?
- Caprock integary?盖层整体安全性?

Simulator TOUGHREACT模拟器

Processes (过程):

- Multiphase fluid and heat flow: TOUGH2 V2 (Pruess, et al., 1999)(流体和热 模拟)
- Transport: advection and diffusion in both liquid and gas phases (溶质运移 模拟)
- Chemical reactions: (化学反应模拟)
 - Aqueous complexation 水相络合物
 - Acid-base 酸性机制
 - Redox 氧化还原机制
 - Mineral dissol./precip. (equilibrium and/or kinetics)
 矿物质溶解沉淀(平衡或动态)
 - Gas dissol./exsol. 气体溶解析出
 - Cation exchange 阳离子交换
 - Surface complexation 表面络合
 - Linear Kd adsorption 线性Kd吸附
 - Decay 衰减

Special Features 特点:

- Changes in porosity and permeability, and unsaturated zone properties due to mineral diss./ppt. and clay swelling 由于矿物质溶解/沉淀和粘土膨胀引起的孔隙度和渗透率以及非饱属 性的变化
- Gas phase and gaseous species are active in flow, transport, and reaction

气相和水相物质在流动、运移和化学反应中是活跃的

- General: Porous and fractured media; 5 φ-k models; rate laws; any number of chemical species
 - 常规的:孔隙和裂隙介质,5φ-k模型;速率定律;任何数量的化学物种
- Wide range of conditions: P, T, pH, Eh, Salinity 宽泛的应用条件: 压强,温度, pH, 电势以及盐度
- Widely used: institutions, J. Papers 广阔的应用领域:许多研究机构以,发表了许多论文

Water Chemistry in the Observation Well Induced by CO2 Injection at Frio

	Mineral	Chemical composition	Vol.% of medium	Component	Concentratio	
South Liberty Salt Dome	Primary: quartz kaolinite calcite illite kerogen-OS oligoclase K-feldspar Na-smectite chlorite hematite porosity	CaCO ₃	Sand Shale 40.6 17.3 1.41 3.95 1.35 9.81 0.7 25.33 0.0 1.8 13.86 4.75 5.74 4.27 2.8 20.7 3.19 2.12 0.35 0.0 30 10	$\begin{array}{c} Ca^{2+} \\ Mg^{2+} \\ Na^{+} \\ K^{+} \\ Iron \\ SiO_2(aq) \\ Carbon \end{array}$	n (mol/kg H ₂ O) 6.6 x10 ⁻² 2.2 x10 ⁻² 1.35 4.53 x10 ⁻³ 4.63 x10 ⁻⁴ 2.50 x10 ⁻⁴ 5.04 x10 ⁻²	
QA-52604x	Secondary: anhydrite magnesite low-albite dolomite siderite Ca-smectite pyrite ankerite	CaSO ₄ MgCO ₃ CaMg(CO ₃) ₂ FeCO ₃ CaMg _{0.3} Fe _{0.7} (CO ₃) ₂		Sulfur Al ³⁺ Cl ⁻ O ₂ (aq) pH T	$\begin{array}{c} 4.20 \times 10^{-5} \\ 1.56 \times 10^{-8} \\ 1.49 \\ 4.88 \times 10^{-68} \\ 6.7 \\ 59^{\circ}C \\ \end{array}$	
China Australia Geol	dawsonite ogical Stor	NaAlCO ₃ (OH) ₂ KAl ₃ (OH) ₄ (SO ₄) ₂ age of CO ₂	2	-	550	
中澳二氧化	碳地	质 封 有	ŗ			3

Water Chemistry Change: Results

中澳二氧化碳地质封存

Long-term Storage of CO₂CO₂的长期储存

Schematic representation of the 2-D radial flow model for supercritical CO_2 injection into a sandstone formation.

- 2-D radial model for longterm CO₂ storage. Use physical and chemical conditions and parameters as in the previous 1-D radial example
 CO2的长期储存二维径向模型
- Consider density changes due to reactions (aqueous complexation of bicarbonate with dissolved cations) such as NaHCO₃, CaHCO₃⁺, MgHCO₃⁺, and FeHCO₃⁺, ...

考虑由于反应引起的密度变化

China Australia Geological Storage of CO2

Gas and Aqueous Phases

气相和水相

内容

CO₂, injected into a storage reservoir will tend to migrate upwards towards the caprock because the density of the supercritical CO₂ phase is lower than that of the aqueous phase

储层中注入CO2趋向向上面的盖层运移,因为超 临界的CO2密度低于水的密度

In the upper portions of the reservoir, CO₂ dissolution into brine lowers pH and induces mineral dissolution

在储层的上部,CO2溶解于盐水中使pH降低, 并导致矿物溶解

Then aqueous complexation of bicarbonate with dissolved cations: NaHCO₃, CaHCO₃⁺, MgHCO₃⁺, and FeHCO₃^{+,} increase density, and enhance convection mixing

水中碳酸氢根的络合物以NaHCO3,CaHCO3+, MgHCO3+和FeHCO3+溶解离子存在,增加水

Porosity Change and Mineral Trapping

孔隙变化与矿物捕获

- Lowed pH induces dissolution of primary minerals and precipitation of clay and carbonate minerals 低pH导致主要矿物的溶解和粘土矿物和方解石矿 物沉淀
- **Porosity increases slightly in the two-phase** region due to dominant mineral dissolution. While porosity decreases at the front of the aqueous-phase
 - 由于矿物溶解为主,导致两相混合区孔隙度的稍微增加,水相前沿的孔隙度减小
- The mineral trapping starts at late stage and then increases with time 后期矿物捕获开始并随着时间增长
- After 1,000 years, 29% of the injected CO₂ ٠ can be trapped in the solid (mineral) phase, 28% in the aqueous, and 43% in the gas phase.

在1000年后,29%的注入被固体矿物捕获,28%的溶解于水中,43%的以气体(超临界)存在

Cap Rock Alteration due to CO₂ Storage

Change of groundwater quality: heavy metal 地下水质变化: 重金属

- Possibility of leakage pathways such as faults or wells 可能的泄露路径: 断层或井
- CO2 leakage into aquifers may cause mobilization of hazardous trace elements 泄露到含水层可能导致有毒痕量元素的迁移
- Reactive transport modeling shows that substantial increases in aqueous concentrations of lead and arsenic could occur

反应溶质运移模拟显示水相中主要成分如铅和砷的浓度的不断增加

China Australia Geological Storage of CO2

Change of groundwater quality: organics

地下水质变化:有机物

- Leakage of CO2 or brine migration may cause migration of other contaminants (e.g., organics, co-injectants) into aquifers
- CO2泄露或是盐水迁移可能导致其它污染物迁移到含水层
- Model study indicates that benzene could be extracted by supercritical CO2 from storage formation and transported to an overlying aquifer via fracture

模型研究表明苯可能被超临界CO2从地层中析出并通 过裂隙运移到上部的含水层

Research Ongoing; Zheng, Apps, Spycher, Xu, and Birkholzer

China Australia Geological Storage of CO2

Model Validations 模型识别校正

- Can be partially validated from: 能够通过以下方式部分校正:
 - Lab experiments: Batch and flow-through
 实验室实验:静态实验和流动驱替
 - Observations from field demonstration projects
 场地工程观测
 - Analogue from CO2 reservoirs CO2储层类比
- Here the validation concept is different from conventional groundwater modeling:

此处识别的概念与传统地下水模拟不同:

- Pattern, mineral assemblage
 矿物存在形式和组合
- Qualitative, semi-quantitative
 定性的,半定量

China Australia Geological Storage of CO2

Natural Analogue 天然CO2气田比拟法

- Mineral alteration in Ladbroke Grove CO₂ (gas) field of South Australia. 矿物变化
- Observations consistent with our simulations include the destruction of • chlorite and net corrosion of the feldspars, a reduction in the concentration of calcite, an increase in the concentration of siderite and ankerite.

观测矿物变化和计算值一致,包括绿泥石破坏和长石的网状溶蚀,碳酸钙浓度的 减小,菱铁矿和铁白云石浓度的增加

Fig. 2. Comparison of mineral compositions from the CO2-rich Ladbroke Grove and the CO2-absent Katnook samples. Variation in mineral composition is very apparent in carbonates and clays.

Open Challenges (Uncertainties) 面临的挑战(不确定性)

- **Processes are multi-scale in space and time** 过程在空间和时间上是多尺度的
 - The time scale for significant convective mixing is likely to be slow, on the order of hundreds of years or more
 时间只度上、对该很久重要过程可给出微想。 土地在五年的教导你上式具更多。
 - 时间尺度上,对流混合重要过程可能非常慢,大约在百年的数量级上或是更多
 - Kinetics of geochemical interactions 化学反应动力学
- Depend on many factors including initial abundance of primary minerals, and pressure and temperature conditions of storage formation 取决于多因素包括主要矿物的初始浓度,储层压力和温度条件
- Thermodynamic data especially for highly-concentrated solutions: Lab experiments and analogues of natural CO₂ reservoirs 热动力学数据,特别是高浓度的溶液,室内实验和天然CO2储层类比
- Reactivity of SC CO₂ with rock and organic matters is not well understood SC CO2和岩石及有机质的反应过程还未清楚
- Significant changes in porosity could occur, a mechanics model needs to be coupled with a reactive transport model

孔隙度可能会发生重大变化,需要反应该机理的模型和反应溶质运移模型进行耦合

Conclusions (1)

结论(1)

• Reactive transport modeling can solve problems and answer questions related to CO₂ geological sequestration, such as

反应溶质运移模拟能够解决和回答与CO2地质封存相关的问题,例如:

- fate and transport of injected CO2 注入的CO2归宿和运移
- amount of CO2 dissolved in groundwater 地下水中溶解CO2的数量
- trapped by carbonate minerals 碳酸盐矿物捕获
- variations of these storage forms over time. 储存形式随时间的变化
- Comprehensive geochemical transport models such as TOUGHREACT have been developed that incorporate

综合的地球化学运移模型(例如TOUGHREACT)已经开发出来了,主要包括

- aqueous reactions 水相中的反应
- mineral dissolution and precipitation under equilibrium and kinetic conditions 平衡或是动力条件下的矿物溶解和沉淀
- CO2 dissolution and exsolution CO2溶解和析出
- coupled to multi-phase CO2-water flow 耦合CO2-水多相流

Conclusions (2)

- These models have been applied to solve field-scale problems at various sites such as
 - 这些模型应用到各个场地中解决区域尺度的C02储存问题
 - Sleipner in the North Sea,
 - Alberta basin of Canada,
 - the U.S. gulf coast
 - Australia,
 - China,..
- Reactive transport modeling is also an important tool to study storage security, caprock integrity, and degradation of wellbore cements.
 反应溶质运移模拟被用作研究储层安全性、盖层整体性和并孔水泥腐蚀的重要工具
- Leakage from CO2 storage formations into potable aquifers and its impact on groundwater quality is a potential concern, which can be best studied through reactive transport modeling.
 - 通过反应溶质运移模拟,可以评价CO2从泄露到可饮用的含水层中地下水水质的潜在影响
- The model can be only partially validated by Lab, Field, Natural. 模型能够通过实验室、野外和天然类比数据进行部分识别校正
- Many open challenges (uncertainties) remain.
 很多挑战(不确定性)仍然存在

