Addressing the Challenges: Current Research into CCS

Neil Wildgust Project Manager – Geological Storage IEA Greenhouse Gas R&D Programme CAGS Workshop, Changchun, July 2011

IEA Greenhouse Gas R&D Programme

- IEAGHG aims at producing information that is:
 - Objective in evaluating the relative merits of Greenhouse Gas mitigation options
 - Information generated is policy relevant but NOT policy prescriptive
 - We aim to be a trustworthy source of technical information. All IEAGHG studies are:
 - Reviewed by external Expert Reviewers
 - Subject to review of policy implications by Members

Projects identified (2009)

Bellingham Co-Generation Facility	IFFCO CO ₂ Recovery Plant - Aonla
Castor Project	Prosint Methanol Plant
Great Plains Synfuel Plant	Rangely CO ₂ Project
IMC Global Soda Plant	Schwarze Pumpe
In Salah	SECARB - Cranfield II
K12-B	Shady Point Power Plant
Ketzin Project	Sleipner
MRCSP - Michigan basin	Snøhvit LNG Plant
Nagaoka	Sumitomo Chemicals Plant
Otway Basin Project	SRCSP – Aneth EOR-Paradox Basin
Pembina Cardium Project	SRCSP – San Juan Basin
Petronas Fertiliser Plant	Warrior Run Power Plant
IFFCO CO ₂ Recovery Plant - Phulpur	Weyburn-Midale
Chemical CO. "A" CO ₂ Recovery Plant	Zama EOR Project

Capture over 100 ktCO₂

- Monitored EOR over 10 ktCO₂
- Capture over 10 ktCO₂ from Flue Gas
- Coalbed Storage over 10 ktCO₂
- Injection over 10 ktCO₂ for Storage
 - China Australia Geological Storage of CO2

Extent of coverage vs ZEP project matrix

Storage rates

Recent IEAGHG Storage Studies

- GCCSI studies (Impurities, Gap Analysis)
- Storage Capacity Coefficients (EERC)
- Injectivity (CO2CRC)
- DSF brine and pressurisation (Permedia)
- Storage Costs (ZEP Phase 1)
- Caprock Systems (CO2CRC)
- Monitoring Other Substances (CO2GeoNet)
- Groundwater Impacts (CO2GeoNet)

Basin Exploration Level

Cost Distribution for Onshore DSF

Key Preliminary Conclusions – Gap Analysis Study

- Subject to expert review comments
- G8 objective (20 by 2020) achievable
- IEA objective (100 by 2020) impossible
- IEA objective achievable by 2028
- 100 bankable storage projects target requires 900MM to 4300MM Euros global investment by 2025

Pressurisation Study - Permedia

- Open systems: regional lateral brine flux, transient pressurisation
- Closed systems: brine flux within storage compartment, rapid loss of injectivity
- Semi-closed systems: more realistic?

Shale Porosity-Permeability Transform (Young and Aplin 2009)

China Australia Geological Storage of CO2

G

Empirical Relationships affecting Regional Shale Permeability

Permedia Conclusions

- Characterisation of regional shale properties is problematic (scale effects)
- Brine displacement may negate the adverse effects of pressurisation
- Shale caprocks with microdarcy permeability will allow brine migration
- Heterogeneity may affect use of abstraction wells for pressure relief (CO₂ breakthrough)
- Closed system assumption only valid for small pressure compartments

China Australia Geological Storage of CO2

Groundwater Impacts Study

- Study commissioned by IEAGHG and carried out by CO₂GeoNet
- Led by BRGM

6

China Australia Geological Storage of CO2

Pressure effects

displacement of brine in 'open' aquifers cannot be avoided

 CO_2

Brine

faults, abandoned wells

- characterization and monitoring of

pathways

China Australia Geological Storage of C

Overlap of storage and groundwater resources in Europe

China Australia Geological Storage of CO2

G

Overlap of Groundwater and Storage Resources - China

Caprocks Study - Seal Potential

- Overall seal potential is a function of capacity, geometry and integrity of a caprock
- Capacity refers to maximum CO₂ column height that can be retained
- Geometry refers to the thickness and lateral extent of the caprock
- Integrity refers to geomechanical properties
- Report presents a qualitative assessment methodology for basin-level screening

Seal Capacity

- Controlling factors:
 - Pore throat size
 - Interfacial tension (IFT)
 - Wettability
- Effects of wettability assumptions on capacity
- Wettability/IFT of waterscCO₂ systems is a knowledge gap

IEAGHG Storage Networks

Wellbore Integrity Network

Modelling Network

Ga

China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

Forthcoming IEAGHG Storage Studies

- Brine abstraction (EERC, US DOE co-funding)
- Implications for CCS of Shale Gas Extraction
- Resource Interactions for CO₂ Storage
- Induced Seismicity
- Phase 2 of Storage Costs (outside Europe)
- <u>www.ieaghg.org</u>

