

CO₂ Enhanced Saline Water Recovery (CO₂-EsWR)

QI LI

IRSM, Chinese Academy of Sciences, Wuhan, China

Outline

- Saline aquifer storage of CO₂
- Pressure management of CGS
- CO₂ enhanced saline water recovery
- Fundamental of EsWR and EOR
- Feasibility of CO₂-EsWR in China
- Conclusions

CCS : Carbon Capture & Storage

CO₂ Geological Storage

Terrestrial and seabed storage

Total amount of China CO₂ emission: 6.5 Gt/a

Theoretical capacity:	
Saline aquifer:	3066 Gt
Oil field:	4.8 Gt
Gas field:	5.2 Gt
Coalbed:	12 Gt

- China's theoretical capacity: very huge
- Percentage of saline aquifer storage: 99%

(Li et al., Energy Procedia, 2009)

Structural Traps

Fault

Stratigraphic Traps

Lecture for CCS School in Beijing, 19-21 April, 2012

Pressure management of CGS

Current status of country-scale storage screening assessments

Source: IEAGHG 2011, modified by the Global CCS Institute

CCUS: CCS + Utilization

(China CCUS Roadmap, 2011)

Not including Options of Carbon Utilization Only

CO₂-EsWR: Charming CCS+U

- 1. Plant Module
- 2. CO₂ Capture Module
- 3. CO₂ Sequestration Module
- 4. Extracted Water Module
- 5. Water RO Module

CO₂-EsWR: Background

CO₂-EsWR: Background

Cost effective pressure relief of CCS close system

CO₂-EsWR: Background

- CCS+U
- Water shortage in West CHINA
- Subsidence induced by Over exploration of groundwater in North CHINA and Changjiang delta

CO₂-EsWR vs. CO₂-EOR

- Commons:
- Enhanced some fluid
- Differences:
- Few injection wells of CO₂-EsWR
- Huge amount (e.g. >>1 Mt/a) of injected CO₂
- High pressure gradient of CO₂-EsWR
- CO₂-EsWR: Storage plus water recovery
 - CO₂-EOR: Oil recovery plus storage

Feasibility of CO₂-EsWR in China

Conclusions

- CO₂-EsWR is an attractive option of CCUS.
- CO₂-EsWR is very suitable for water shortage area, e.g. North-West China, to implement CCS in the future.
- CO₂-EsWR is a challenging offset to mitigate and rehabilitate subsidence induced by overexploitation of groundwater in North China and Su-Xi-Chang area.

Acknowledgments

- One-Hundred Talent Program, Chinese Academy of Sciences
- CAGS Program and assciated persons
- Thanks to Prof. Xiaochun Li, Dr. Bing Bai, Ms. Guizhen Liu, Xuehao Liu and Miao Jing

Copyrights

- This MS PowerPoint File can be re-distributed and used for research purposes only with keeping the initial integrality.
- Questions and comments, please email to the author: qli@whrsm.ac.cn

Qi LI, Ph.D. Research Scientist and Professor

Institute of Rock and Soil Mechanics (IRSM), Chinese Academy of Sciences

Xiaohongshan, Wuchang, Wuhan 430071, China

Tel./Fax: +86-27-87198126 URI: <u>http://www.whrsm.ac.cn/</u>

