

GLOBAL OUTLOOK FOR CCUS

Chris Consoli Global CCS Institute CAGS Technical Workshop 26 June 2017

CO₂ compressor unit (after absorption capture)

Gorgon Project- CO₂ injection rate of 3-4 Mtpa

Pipeline engineering: a mature industry

CO₂ Pipeline Network in the USA

Provided by the Global CCS Institute

CCS: THE INCONVENIENT TRUTH

Paris commitments: currently on track for +3°C

- CoP21 was a significant step forwards:
 - 195 countries agreed a higher level of ambition; limiting global warming to1.5 - 2°C
 - Established bottom-up architecture for emission reduction targets allowing nations to determine their national contributions
 - Established a process of regular (5 yearly) reviews of national emission reduction targets and an expectation that targets will become more stringent

CCS is a vital element of a low-carbon energy future

Source: IEA Energy Technology Perspectives (2016)

Mitigation costs more than double in scenarios with limited availability of CCS

*Percentage increase in total discounted mitigation costs (2015-2100) relative to default technology assumptions – median estimate

Source: IPCC Fifth Assessment Synthesis Report, Summary for Policymakers, November 2014.

Fossil fuel demand growing & reserves robust

Source: IEA World Energy Outlook, 2016 (New policies scenario)

70% of CO₂ emissions from gas processing must be captured and stored by 2050 in the IEA 2 Degree Celsius Scenario

Currently, in most high emission industries there are no cost-effective and technically viable method to reduce emissions, apart from CCS

STATUS OF CCS: 2017

Large-scale CCS facilities by region or country

	Early planning	Advanced planning	Construction	Operation	Total
North America	1	2	3	12	18
China	5	2	1	-	8
Europe	2	2	-	2	6
Gulf Cooperation Council	-	-	-	2	2
Rest of World*	3	1	1	1	6
Total	11	7	5	17	40

* Includes facilities in Australia, Brazil and South Korea.

North America dominates – 15 (of 22) facilities in operation or construction, China has most facilities in planning

Actual and expected operation dates up to 2022 for large-scale CCS projects by industry and storage type*

* Includes projects in the Operate, Execute and Define stages

 Δ Feasibility studies assessed the possibility of CO₂ capture and storage from ammonia production, from cement production and from waste-to-energy sources

CCS Facilities – power, industry

Petra Nova Carbon Capture (2017)

- Capture: Sub-bituminous coal-fired
 - Post combustion (Amine); retrofit
- Storage: CO₂-EOR
 - ~1.4 MTPA; West Ranch oil field

Gorgon CO₂ Injection Project (2017/18)

- Capture: Industrial, natural gas processing
 - Gas fields: 1-14% CO₂
- Storage: Dedicated
 - 3.4 and 4.0 MTPA CO₂

evere: Statoil

Sleipner (1996)

- Capture: Industrial, natural gas processing
 - Fields: <2-9%
- Storage: Dedicated
 - ~1 MTPA
 - Utsira Formation

CCS Facilities – next generation industries

Coal-to-X

Yanchang CCS Project (2018; pilot)

- Capture: Industrial gasification
 - Coal-to-chemical, Coal-to-liquids
- Storage: CO₂-EOR
 - Yanchang oil fields, 0.41 MTPA CO₂

Hydrogen

Tomakomai CCS Demonstration (2016)

- Capture: Hydrogen production (Amine)
- Dedicated geological storage
 - Onshore-offshore storage
 - 100,000 TPA

BioEnergy - CCS

Illinois Industrial CCS Project (2017)

- Capture: Fermentation, Corn-to-ethanol plant
- Storage: Dedicated
 - ~ 1 MTPA

Current operating and facilities under construction have around 40 Mtpa of CO₂ capture capacity

CCS is competitive with other low emission technologies

Intermittent renewables also require energy storage to be comparable to CCS...CCS is lower cost Wind + battery storage 9000 400 8000 350 7000 300 6000 250 Capital Cost \$/kW LCOE \$/MWh 5000 200 4000 150 3000 100 2000 Levelised cost (LHS) 50 1000 -Average capital cost (RHS) 0 0 CCS COAL PRIOR Solar themal with storage CCS coal supercritical Geothernal Pumped nydro Onethole wind Battery storage CCS ORS SOLAR V SOLAN

40 Mtpa

Global Status of CCS (June 2017)

40 large-scale CCS projects combined capture capacity of approximately 71 Mtpa*:

- 22 projects in operation or construction (40 Mtpa)
- 6 projects in advanced planning (6 Mtpa)
- 12 projects in earlier stages of planning (25 Mtpa)

**Mtpa = million tonnes per annum*

**Source: IEA, Energy Technology Perspectives (2016).

<u>(</u>)

ome fame

95 Gt IEA CCS contribution 2015-2050 which means Gtpa IEA CCS per annum contribution in 2050 which equals TCF in 2013 we used

TCF IEA WEO 2013 natural gas consumption

HOW CAN WE GET THERE?

USD billion since 2006

- Scale of renewables investment ^{3,0}
 is instructive
- CCS has not enjoyed commensurate policy support
- Enhanced oil recovery has provided impetus in North America
- Policy parity is essential
- How do we get CCS onto a similar curve?

Data source: IEA 2015 "Tracking Clean Energy Progress". Bloomberg New Energy Finance "Clean Energy Investment By the Numbers – End of Year 2015" fact pack.

Advocacy: International influence

Unparalleled access to international decisionmaking

- Advocating for CCS policy support in important multilateral agreements and platforms
- The primary channel of influence for CCS in the United Nations Framework Convention on Climate Change
- Knowledge of international CCS funding programs
- Influencing CCS design via the International Standards Organisation (ISO)

Accredited Observer

UNFCCC Green Climate Fund Intergovernmental Panel on Climate Change

Member

Climate Technology Centre and Network United Nations Global Compact

Participant

Carbon Sequestration Leadership Forum Clean Energy Ministerial North American Energy Tri-Lateral

- Countries must be further encouraged to include CCS in the next wave of NDCs (access to affordable finance for projects may depend on it)
- CCS needs higher representation in developing country TNAs
- 10 countries cite CCS in INDCs represents a third of global emissions
 - Adding those countries that we know to have an active interest in CCS, but who have not cited CCS in their NDCs, could represent > 65% of global emissions

Advocacy: Status and the underground

THE GLOBAL STATUS OF CCS | 2016 SUMMARY REPORT

The Institute's key publication can be found at: status.globalccsinstitute.com

Our Vision for CCS: CCS is an integral part of a low-carbon future

- We are an international membership organisation.
- Offices in Washington DC, Brussels, Beijing and Tokyo. Headquarters in Melbourne.
- Our diverse international membership consists of:
 - o governments,
 - o global corporations,
 - o small companies,
 - o research bodies, and
 - o non-government organisations.
- Specialist expertise covers the CCS/CCUS chain.

Key Messages from the Global CCS Institute

CCS is a vital component of a low-carbon future.

CCS is established and already reducing emissions.

Strong policy support is required globally.

Chris Consoli – Senior Adviser, Global CCS Institute chris.consoli@globalccsinstitute.com

Twitter: @GlobalCCSChris

GLOBALCCSINSTITUTE.COM