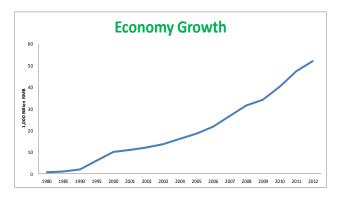
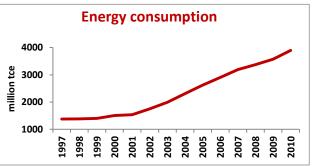
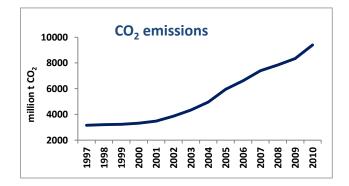

CAGS II Mini Workshop, Wuhan, China, 19 November, 2014

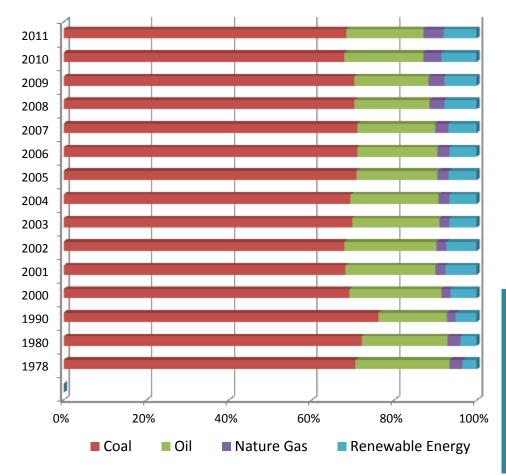
Status of CCUS in China

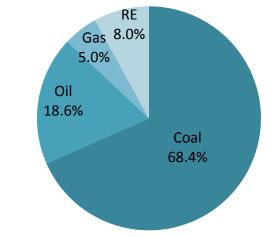

The Administrative Centre for China's Agenda 21



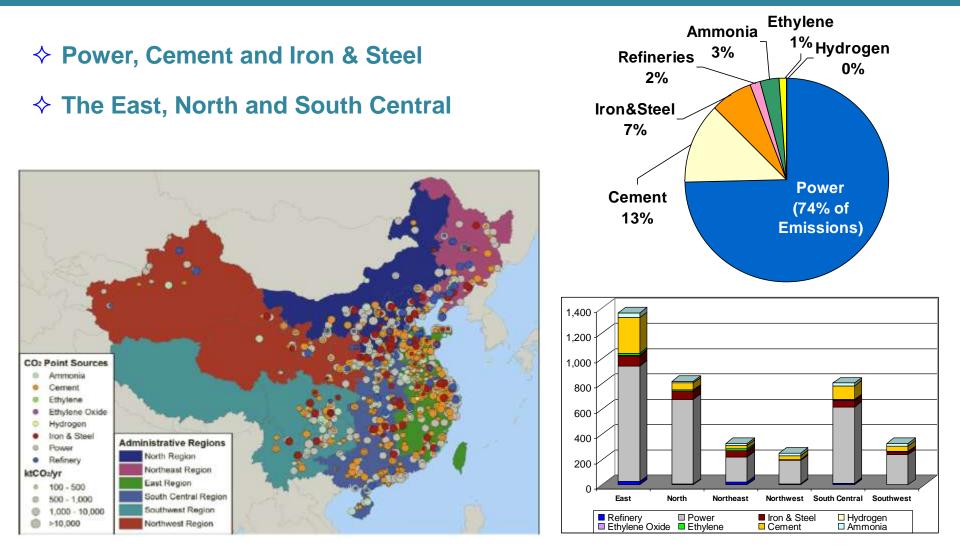

OVERVIEW OF ECONOMY, ENERGY AND EMISSIONS

Economy, Energy and Emissions in China


- During the period of rapid industrialization and urbanization, the GDP from high energyintensive industries accounted for a big proportion in China.
- The energy demand increases by 200 million tce annually in the recent years.
- From 1990 to 2010, CO2 intensity declined by 57%, that is rare all over the world.
- From 1990 to 2010, the GDP grew by 7.3 times, while energy consumption and CO2 emission increased by 3.3 and 3.0 times.
- CO2 emission intensity to drop 40-45% by 2020 according to the 2005 level.



Coal accounts for around 69% of Primary Energy Consumption in the past 30 years.



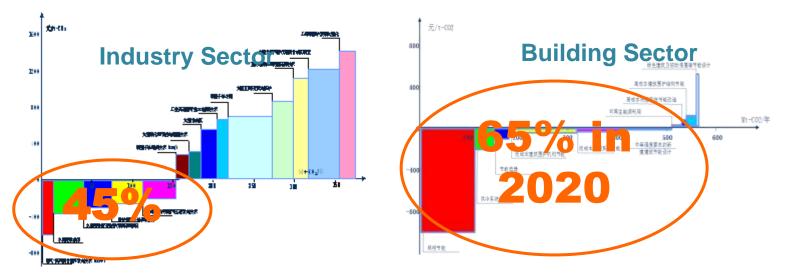
2011's Energy consumption structure in China

Renewable and nuclear energy development is remarkable, the share of which in primary energy mix keeps increasing, but still could not meet the new incremental demand for energy services in quite a long time.

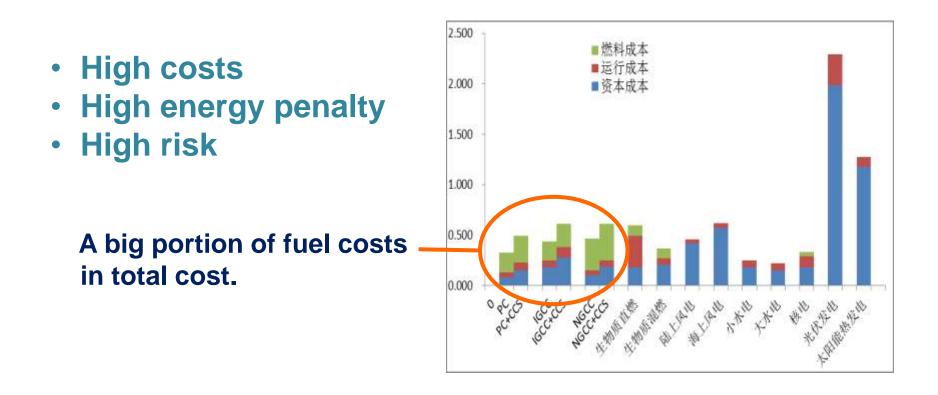
Large Industrial CO₂ Point Sources & Distribution

Source: RT Dahowskia, X Li et al., A Preliminary Cost Curve Assessment of Carbon Dioxide Capture and Storage Potential in China, Energy Procedia 00 (2008) 2849-2856.

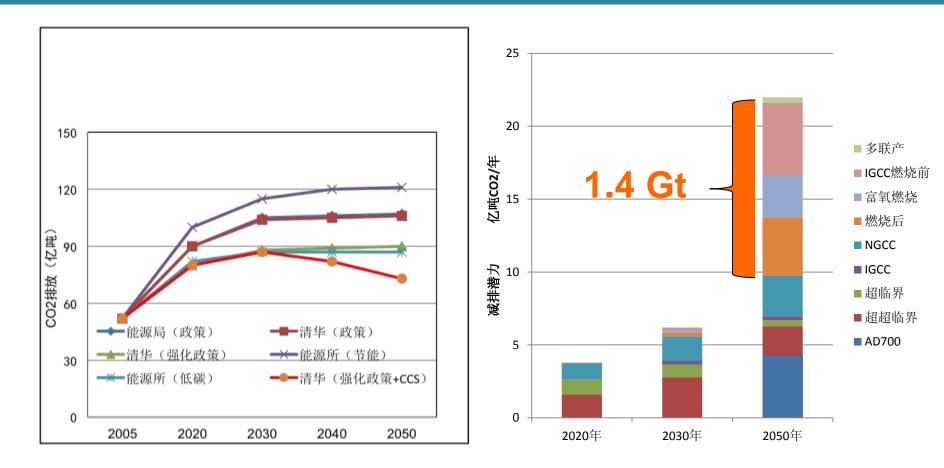
ROLE AND POTENTIAL OF CCUS IN CHINA


2

Normal mitigation technologies have great potential for CO2 reduction in China currently, and are cost effective.


Mitigation Potential

	2020	2030	2050
Mitigation tech. in Industry, Transport and Building	2.2Gt	3.8Gt	5.0Gt
Non-Fossil Energy Tech.	1.5Gt	3.0Gt	5.3Gt


Mitigation Cost (big portion of negative cost)

CCUS is not mature and is expensive

Scenario analysis suggests CCUS will play important role in midand long-term.

Theoretical Storage Capacity

Saline Aquifer

Examined 17 onshore basins and 10 offshore Applied specific storage volume method based on

Capacity: **3.1Tt**CO₂

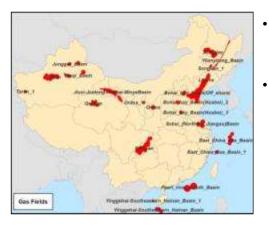
- 2.3 GtCO₂ onshore
- 0.8 GtCO₂ offshore

EOR

ECBM (600-1500m)

Coal-Bearing Regions

- Examined 29 onshore basins and 21 offshore
- Capacity **4.8Gt**CO₂ ٠

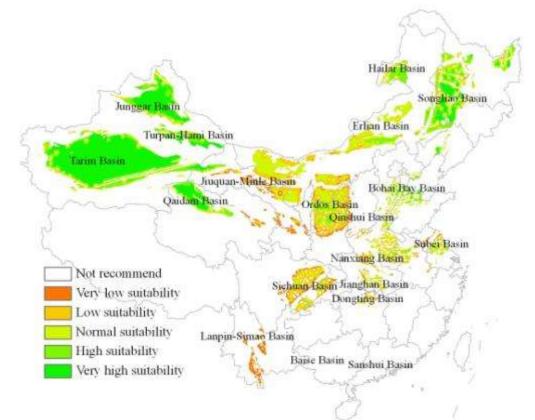

•

٠

- 4.6 GtCO₂ onshore
- 0.2 GtCO_2 offshore
- Up to 7.0 BBO additional oil recovery

- 10% of OCIP for ٠ storage
- Examined 69 onshore ٠ coal-bearing regions
- 12.1GtCO₂ capacity ٠
- 1.6 Tm³ additional coal bed methane recovery

Depleted Gas Reservoirs



- Examined 23 onshore basins and 6 offshore
- Capacity **5.2 Gt**CO₂ storage potential
 - 4.3 GtCO₂ onshore
 - 0.9 GtCO₂ offshore

Ranking of potential storage sites

Criterion				Classes				weight
1 st order	2 nd order	Killer criterion	1	2	3	4	5	
	Size of structure element (divided by faults)	<500 km ²	<1000 km ²	Small <5,000 km ²	Medium <10,000 km ²	Large <50,000 km ²	Giant >50,000 km ²	0.01
9	Maximum depth	<1000m	Shallow (<1,500 m)		Intermediate (1,500 –3,000 m)		Deep (>3,000 m)	0.03
storage capacity and injectivity (major economic factors)	Average permeability of storage formation	<1mD	1-10mD	10-50mD	50-100mD	100-500mD	>1000mD	0.1
r (major ec	(total, effective) porosity	<5%	5-10%	10~15%	15~20%	20~25%	>25%	0.02
d injectivity	Fluid pressure		pressure ratio (> 1.2)		pressure ratio (1.0-1.2)		pressure ratio (<1.0)	0.01
ipacity an	Injection thickness	<10m	10-20m	20-50m	50-100m	100-300m	>300m	0.08
storage ca	Reservoir failure (pressure build-up)		Pluvial and Alluvial facies		Fluvial facies		Lacustrine and paludal facies	0.02
	Primary seal formation		-		-		-	0.01
	Geothermal		Warm basin (>40? /km)		Moderate (20-40? /km)		Cold basin (<20? /km)	0.05
	Geology		Extensively faulted and		Moderately faulted and		Limited faulting	0.02

Methodology for site screening

CCUS ACTIVITIES: POLICY, R&D AND DEMO

3

Policies are getting into details gradually

- National Medium- and Long-Term Program for Science and Technology Development (2006-2020) by State Council, 2006
- China's scientific actions on climate change, *by MOST*, 2007
- 12th National Scientific and Technological Plan on Climate Change by MOST, May 2012
- Work plan for 12th 5-year National GHG Control by State Council, 2012
- S&T roadmap of China's CCUS development *by MOST/ACCA21, 2011*
- Special Plan for CCUS technology development *by MOST, 2013*

General statement

"to develop CO2 near zero emission technology"

Detailed development measure

Targets, actions in capture, storage, utilization and storage, full-chain demo, etc

SCI & EI Papers

Domestic Patents

CCUS Progress Summary: R&D

• R&D Activities in the 11th FYP

Project Title	Funding by	Duration	Type of projects
The Project of CCS–EOR, Utilization and Storage	National Key Basic Research 国家重点基 础研究发展计划	2006-2010	Basic Research
Program of CO2 Capture and Storage technology	National High- Tech R&D Program国家高技 术研究计划	2008-2010	
The Key Tech Research Program on CCS-EOR and Storage	National High- Tech R&D Program国家高技 术研究计划	2009-2011	Technology R&D
The Key Tech Research Program on CO2-Algae-Biodiesel	National High- Tech R&D Program国家高技 术研究计划	2009-2011	
CO2- Safety Mining with CO2 Gas Reservoirs and CO2 Utilization Tech	National Major Special Project国家重大专项	2008-2010	
Demonstration Project of Mining and Utilization Tech of Volcanic gas containing CO2 in Songliao Basin	National Major Special Project国家重大专项	2008-2010	R& D

CCUS Progress Summary: R&D

• R&D Activities in the 12th FYP

Name of Projects	Funding by	Duration	Type of projects	
Demonstration Project of CO2 capture and geological storage in Coal Liquification Plant, China Shenhua Group	National Key Technology R&D Programme国家重点基础 研究发展计划	2011-2014	Technology R&D	
The Key Tech Research Project of CO2 Emission Reducing on Iron- Steel Sector	National Key Technology R&D Programme国家重点基础 研究发展计划	2011-2014		
Research and Demostration Program of IGCC +CO2 Caputure, Utilization and Storage	National Key Technology R&D Programme国家重点基础 研究发展计划	2011-2013	Technology R&D	
CO2 Storage Capacity Assessment and Demonstration in China	China Geological Survey	2011-2014		
The Program of CCS –EOR, Utilization and Storage	National Key Basic Research 国家重点基础研究发展计划	2011-2015	Basic Research	

CCUS Progress Summary: Enterprise Action

Project Title	Scale	Capture Tech	Storage/ Utilization	Status
The pilot project of CO2 Capture, Huaneng Beijing Gaobeidian Thermal Power Plant	Capture Capacity:3,000 T/Y	Post- Combustion	Food Use	Operated in 2008
Demonstration Project of CO2 capture and storage in Coal Liquification Plant, China Shenhua Group	Capture Capacity:100,000 T/Y Storage Capacity: 100,000 T/Y	Coal liquefaction	Saline Aquifer	operated in 2011
Demonstration Project of CO2 capture, Storage and Utilization in IGCC Plant Greengen of Huaneng	Capture Capacity:60,000 100,000 T/Year	Pre- Combustion	EOR	Launched in 2011
Small Scale Demonstration Project on CO2 Capture and EOR in Shengli Oil Field, Sinopec	Capture/Utilization:40,000T/Y	Post- Combustion	EOR	Operated in 2010
Demonstration Project of CO2 capture, Shanghai Shidongkou Power Plant, Huaneng	Capture Capacity:120,000 T/Y	Post- Combustion	Food/ Industrial	Operated since 2010
Demonstration project of Carbon Capture, Shuanghuai Power Plant, China Power Investment	Capture Capacity:10,000 T/Y	Post- Combustion	Food/ Manufacture	Operated in 2010
Pilot Plant of CO2 capture in Lianyungang City, CAS	Capture Capacity:30,000 T/Y	Pre- Combustio	N/A	Operated in 2011

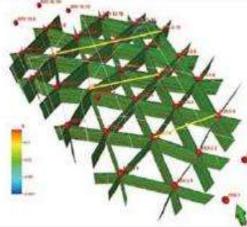
Demonstration

China Power Investment,

中国电力投资集团 10,000t/a capture pilot

Huazhong University of S&T (HUST) 35MWt Oxy-fuel pilot,

Huaneng Group Gaobeidian & Shidongkou Power Plant Demo, 燃烧后捕集+食品利用



Demonstration

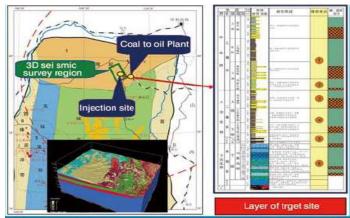
PetroChina CO₂ EOR ,Jilin Oilfield,天然气分离CO2

ENN Group Micro algae Bio-fuel Pilot 吸收CO2生产生物柴油 Capacity: 20,000t/y

China United Coalbed Methane

ECBM Pilot Project

Qinshui, Shanxi


Demonstration

SINOPEC, Shengli Oil Field CO2-EOR, 1Mt CO2/year

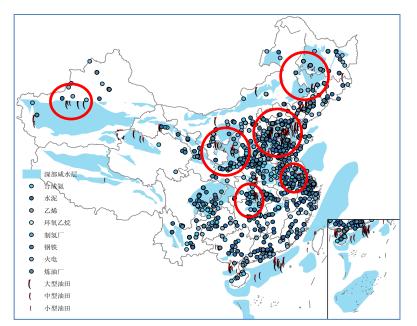
Shenhua Group Erdos, 100,000t/a

CCUS Progress Summary: International Collaboration

Project	Partner	Duration
China-Australia Geological Storage of CO2 (CAGS)	RET, GA	2012-2014
China-EU NZEC Cooperation	UK, EU, Norway	2007-2009
China-EU Carbon Capture and Storage Cooperation (COACH)	EU	2007-2009
Sino-Italy CCS Technology Cooperation Project(SICCS)	ENEL	2010-2012
China-US Clean energy Research Center	MOST, NEA, DOE	2010-2015
CSLF Capacity Building Projects	CSLF	2012-
MOST-IEA Cooperation on CCUS	IEA	2012-

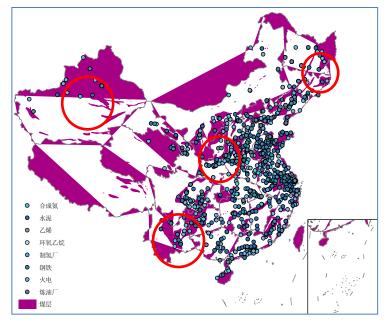
Technology Roadmap Study on Carbon Capture, Utilization and Storage in China

- 为促进中国CCUS技术发展,组织有关单位和专家共同编写 中国CO2捕集、利用与封存技术路线图报告。目的是梳理 全球和中国CCUS技术发展现状,识别其未来重点发展方向 和路线,探索提出CCUS技术发展的相关政策、监管制度 等。
- 路线图研究提出我国CCUS技术发展的愿景,为应对气候变 化提供技术可行和经济可承受在技术选择,促进我国经 济、社会的可持续发展。


Vision and Target **Technically Feasible & economically affordable** Technical **Capacity for** applications Establish 1 Mt/a full-chain demo System scale: Launch full->1 million tons/a chain demo Energy penalty: <17% System scale: Cost: 240 RMB/ton 1 million tons/a System scale: Capture system: Energy penalty: <20% >0.3million tons/a >1 million tons/a Cost: 300 RMB/ton Energy penalty: <25% Energy penalty:< 12% Cost: 350 RMB/ton Capture system: Cost: 140 RMB/ton 1 million tons/a **Capture system:** Pipeline net:>= 1000km Energy penalty:< 15% 0.3-1 million tons/a Cost: 70 RMB/ton Cost :180 RMB/ton Energy penalty: <20% Utilization scale:>2 million Cost: 210 RMB/ton Pipeline:200km tons/a Cost:80RMB/ton*million km Pipeline: >80km **Oil-production:1million** Capacity:>1million tons/a Cost: 90 RMB/ton tons/a Capacity:0.3million tons/a Utilization scale:2 million Storage percentage: 60% Utilization scale: 1 million tons/a Storage: >1million tons/a tons/a **Oil-production:0.6million** Cost: 30 RMB/ton **Oil-production:** 0.3million tons/a tons/a Storage percentage: 50-60% Storage percentage: 40-50% Storage: 1million tons/a Storage: 0.3million tons/a Cost: 40 RMB/ton Cost: 50 RMB/ton

2015

Vision and Target Technically Feasible & economically affordable


- 到2015年:突破低能耗捕集关键技术,建立封存安全保障研发体系,开展全流程中试及示范,实现系统规模30万吨/年以上、能耗增加25%以内、成本350元/吨左右。
- 到2020年:建立封存安全保障体系,建成百万吨级全流程CCUS技术 示范,实现能耗增加额0%以内、成本300元/吨左右。
- 到2030年,具备CCUS全流程项目设计、建设和运营的产业化技术能力,实现系统规模100万吨/年以上、能耗增加的17%以内、成本240元/吨以内。
- 路线图识别出CCUS各技术环节基础研究、技术研发和示范的优先技术方向,包括捕集技术、运输技术、利用技术和地质封存技术。

CCUS Technology Roadmap: Full Chain Demo

EOR and Depleted Oil reservoir Storage Opportunities

- 鄂尔多斯盆地、松辽、苏北、渤海 湾、准葛尔
- 化工、燃煤电厂、钢铁高浓度排放源

ECBM Storage Opportunities

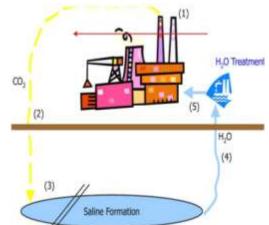
- 沁水盆地、云贵滇区域、鄂尔多 斯、塔里木
- 化工、燃煤电厂

CCUS Technology Roadmap: Full Chain Demo

考虑技术组合的减排潜力、减排成本(经济性)、减排风险(安全性)和发展潜力等指标,筛选出不同的全流程技术组合示范:

- The <u>nationwide utilization and storage capacity assessment</u> <u>shall be conducted</u> as soon as possible in order to better understand the CCUS potential in China. 尽早开展全国范围的利用和 封存潜力评估,掌握其应用潜力。
- The first full-chain technology demonstration shall be launched for those <u>high-concentration emission sources</u> (such as coal chemical) due to the low capture cost; coalfired power plant shall also carry on full-chain technology demonstration timely because their emissions are high in volume with multi-point sources; on the aspect of <u>technological options shall be balanced</u>. 煤化工高浓度排放源捕集 成本低,应率先开展全流程技术示范; 燃煤电厂排放量大、点源多,及时开展全流程 示范,技术方向选择应均衡。
- Considering the maturity of CO2-EOR technology and large potential for on-land saline aquifer storage, the full-chain technology demonstration for <u>CO2-EOR and land saline</u> <u>aquifer storage shall be prioritized</u>. EOR技术成熟度高、陆上咸水层 封存潜力大,应优先部署。

CCUS Technology Roadmap: Full Chain Demo


- The demonstrations and scale-up on the integration of CO2-EOR and on-land saline aquifer with multiple capture options shall actively but steadily take forward with an aim to operate <u>demonstration project</u> <u>at 1 million tons/a and above by 2030</u>. 积极稳妥推进EOR、陆上咸 水层与多种捕集方式的集成示范,逐步在2030年形成的1Mt/a及以上规 模经营的示范工程。
- The research on <u>innovative and cost-effective CO2 utilization</u> <u>technologies shall be enhanced</u>, and initial demonstration can be launched jointly with other integrated systems. 加强创新型低成本高效 CO2利用技术的研究,早期技术示范可考虑与其他集成系统结合开展。
- The full-chain demonstration projects witness <u>more opportunities in</u> <u>Ordos Basin, Songliao Basin, Bohai Bay Basin and the Junggar</u> <u>Basin</u>, while the specific demonstration project shall take the cost, safety, environment and other factors into consideration. 全流程示范项 目在多个盆地有较多机会,具体示范项目的确定应综合考虑成本、安 全、环境等因素。

Current Work

• An Assessment Report on CO2 Utilization Technologies in China is published this summer, led by ACCA21.

对CO2利用技术发展定位与意义、潜力与效益、现状与挑战,以及我国 早期机会和部署建议等进行系统评估

- Enhanced Energy Recovery
- Enhanced Resources Recovery
- Chemicals production
- Bio & Agriculture production
- Products from industrial wastes

 To update CCUS Roadmap with new recognition on Utilization technologies.

CONCLUSIONS

4

- CCUS is important to China
 - In the long term, an important technical option for CO2 reduction.
 - In the short term, could serve as important tool to solve energy and resource issues, e.g. enhanced exploration of shale gas, geothermal, saline water and liquid mineral.
- Besides technology R&D, enabling policies are essential for the take off of CCUS.
- The nature of CCUS technology calls for enhanced International collaboration.

Thank you!

For More Information, Please Visit:

www.ccusChina.org.cn