

Research Progress of CAGS3-TASK3: Potential Evaluation of CGUS in the Junggar Basin and Early Demonstration Opportunities in Eastern Junggar

Yujie Diao

Center for Hydrogeology and Environmental Geology Survey China Geological Survey 27th June, 2017 China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

CONTENTS

1. 研究背景 Background

- 2. 准噶尔盆地碳源分布 CO₂ sources in the Junggar Basin
- 3. 次盆地尺度CO₂理论封存潜力 Theoretical meso-scale potential of CGUS
- 4. 准东地区咸水层封存源汇匹配分析 Source-sinking matching of aquifers CO₂ storage
- 5. 准东CO₂-EWR先导性试验示范模拟研究 Numerical simulation of CO₂-EWR in Eastern Junggar

China Australia Geological Storage of CO2

1. Background

- 中澳二氧化碳地质封存项目(CAGS 3): China Australia
 Geological Storage of CO₂ (Phase 3)
- 中国地质调查局二级项目(CGS): Geological Survey of CO₂ Geological Storage in the Junggar and Other Basins (2016-2018)

中国科学院武汉岩土力学研究所 Institute of Rock and Soll Mechanics, Chinese Academy of Sciences

China Australia Geological Storage of CO2

CONTENTS

- 1. 研究背景 Background
- 2. 准噶尔盆地碳源分布 CO₂ sources in the Junggar Basin
- 3. 次盆地尺度CO₂理论封存潜力 Theoretical meso-scale potential of CGUS
- 4. 准东地区咸水层封存源汇匹配分析 Source-sinking matching of aquifers CO₂ storage
- 5. 准东CO₂-EWR先导性试验示范模拟研究 Numerical simulation of CO₂-EWR in Eastern Junggar

China Australia Geological Storage of CO2

2 CO2 emission sources in the Junggar Basin

- 碳源主要分布在盆地南缘,乌鲁木齐、石河子和奎屯地区。
- CO2 emission sources are mainly distributed in the southern basin, especially Urumchi, Shihezi and Kuitun.

2 CO2 emission sources in the Junggar Basin

Class 类别	Amount 数量	Emission 排放量(Mt/a)
Power plant 电厂	32	67.51
Steel plant 钢铁厂	5	14.53
Cement plant 水泥厂	5	28.05
Chemistry industry 化工厂	12	22.13
Total 合计	54	132.22

▶ 碳源分布特点:

- 共计54处,排放总量
 132.22 Mt/a;
- 排放源以电厂为主,排放 量大,占总排放量 (51.06%);

>CO₂ emission points:

- 54 sources with 132.22 Mt/a emissions
- Mainly are power plants, accounting for 51.06%

CONTENTS

- 1. 研究背景 Background
- 2. 准噶尔盆地碳源分布 CO₂ sources in the Junggar Basin
- 3. 次盆地尺度CO₂理论封存潜力 Theoretical meso-scale potential of CGUS
- 4. 准东地区咸水层封存源汇匹配分析 Source-sinking matching of aquifers CO₂ storage
- 5. 准东CO₂-EWR先导性试验示范模拟研究 Numerical simulation of CO₂-EWR in Eastern Junggar

China Australia Geological Storage of CO2

CO₂ Geological Utilization and Storage (CGUS) technologies CO2地质利用与封存技术

CGUS	Purpose	Technologies				
CO ₂ Geological Utilization 地质利用		Enhanced Oil Recovery, CO ₂ -EOR 驱油				
	Energy Production 能源增采	Enhanced Coal Bed Methane, CO ₂ -ECBM 驱煤层气				
		Enhanced Gas Recovery, CO ₂ -EGR 驱天然气				
		Enhanced Shale Gas Recovery, CO ₂ -ESGR 驱页岩气				
	Resources production 其它资源利用	Enhanced Geothermal Systems, CO ₂ -EGS 驱热				
		Enhanced Uranium Leaching,CO ₂ -EUL 驱铀				
		Enhanced Water Recovery, CO ₂ -EWR 驱水				
CO ₂ Geological Storage 地质封存	Saline Aquife	ers, Depleted Oil & Gas Fields, Unmineable Coal Seams 咸水层,枯竭油气田,不可采煤层				
CaO	China Australia Geological Storage of CO2					
645	中澳二	氧化碳地质封存 💮				

Mesoscale for target selection次盆地尺度(中尺度)

- Suitable for potential assessment of one basin or the inner regional areas, similar as regional scale.
- Between basin and site scales which needs more geological survey for CCUS demonstration or industrialization in the short term, generally before 2030 according to carbon reduction target of China.
- Because of the large coverage and complicated geology different from abroad, the methodologies and parameters should be more suitable for geology.
- Without considering the technical and economic conditions.

Innovation of methodology 方法创新

```
USDOE Methodology
G_{CO2} = A \cdot h \cdot \varphi_e \cdot \rho_{CO2} \cdot E
```

- Focus on comprehensive geological study 更注重系统的地质分析
- Specified the evaluated units as sandstone groups or sections, 评估单元细化至段,甚至砂层组
- Defined the same parameters in the similar sedimentary faces 以岩相为单元取参
- Fully integrated with USDOE methodology and GIS spatial analysis
 充分发挥了USDOE计算方法和GIS空间数据分析优势

First order tectonic units 一级构造单元: 6 Secondary tectonic units 二级构造单元: 44

Hydrogeology 区域水文地质

Geothermal geology 区域地温场

G

China Australia Geological Storage of CO2

Seismotectonics 地震构造

Peak ground acceleration (GB 18306-2015)

China Australia Geological Storage of CO2

Criteria for reservoir selection basically: 储层的必须满足的基本条件:

- 深度 Depth: 800 3500 m
- 岩性 Lithology: clastic rocks, carbonate rocks
- 厚度 Thickness: ≥ 10 m
- 孔隙度 Porosity: ≥ 5%
- 渗透率 Permeability: ≥1 mD
- 盖层 Caprocks: regional, generally mudstone and thicker than 20 m
- 活动断裂 Distance from the nearby active faults: > 25 km
- 地震活动性 Peak ground acceleration: < 0.40 g
- 水动力条件 Hydrogeology: not open hydrodynamic area

China Australia Geological Storage of CO2

		地层系统		厚度			キロ	平均	平均	储集 空间	构造	分址资化
	系	组	地层 代号	(m)	岩性剖面	1佰 层		孔隙度 (%)	渗透率 (10 ⁻³ µm ²)		运动	益地演化
	Q	西域组	Q1 <i>x</i>	2478	 ○ ○ ○ ○ 							准南陆内
		独山子组	N2d		••••							前陆盆地 阶段
	Ν	塔西河组	N1 <i>t</i>	2800							喜马拉雅 运动	
23 reservoirs		沙湾组	N1 <i>s</i>		••—•							
	L	安集海河组	E3 <i>a</i>	1120								
	E	紫泥泉子组	E1-2 <i>z</i>	1180				12.7	3.87-127			11. L /a
		东沟组	K2d		· · · · ·			22.25	110.38			陆内统一 坳陷阶段
Section2 of	К	连不沁组 胜金口组 呼图壁河组	K11 K1s K1h	2000	2000			>20	>50	砂	燕山运动 Ⅱ幕	
Sangonghe	~	清水河组	K1q J3q		• - •			16.29 >10	1.47-369.82 3.62-161.99	岩	燕山运动	压扭盆地
formation		头屯河组	J ₂ t					18.35		隙	1 泰	阶段
Sand-ravel	J	西山窑组	J2x	3600				>10	1-225.04	型 为	晚印支 运动	伸展盆地 阶段
rock in the		三工河组	J1 <i>s</i>					>10	1-375.36	主	100000000000000000000000000000000000000	
hottom of		八道湾组	J1b					>10	>5			
		白碱滩组	T3b					>10	>50	2	早印支	陆内坳陷
Qingshuihe	Т	克拉玛依组	T2 <i>k</i>	1700							运动	阶段
formation		百口泉组	T1 <i>b</i>					13.18	16.15-77.12			
cag	S	Chin	a Au	istr	alia Geologica	I St	orag	ge of	C02	and the second s	the second second second	

C

- Triassic reservoirs 三叠系储层

Low exploration and research degree

- Jurassic reservoirs 侏罗系储层

- Jurassic reservoirs 侏罗系储层

- Paleogene reservoirs 古近系储层

Ziniquanzi Formation

Φ: 12.47% average K: 3.87-127 mD

CGUS technologies	Potential (Gt)	Credibility
Enhanced oil recovery, CO ₂ -EOR	0.148	Effective, Credible
Depleted oil field CO ₂ storage	1.345	Effective, Credible
Enhanced gas recovery, CO ₂ -EGR	0.009	Effective, Credible
Depleted gas field CO ₂ storage	0.016	Effective, Credible
Enhanced coal bed methane, CO ₂ -ECBM	2.281-5.215 4.02 expected	Theoretical, Less Credible
Unmineable coal seams CO ₂ storage	3.405-7.783 6 expected	Theoretical, Less Credible
CO2-EWR/deep saline aquifers	4.8027-164.093 96.055 expected	Theoretical, Less Credible
中澳二氧化碳地	质 封 存	(L)

Potential of 2nd sandstone group in section 2 of Sangonghe Formation 三工河二段二砂组主力储层单位面积封存潜力 China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

Potential of sandstones in the bottom of Qingshuihe Formation 清水河组底部砂砾岩主力储层单位面积封存潜力 China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

Total potential of deep saline aquifers CO2 geological storage/EWR

3.3 Targets of EOR/EGR/depleted oil & gas fields CO2 storage

China Australia Geological Storage of CO2

中

G

3.4 Geological suitability assessment for CO2-EWR target selection

Level one index	Weig ht	Level two index	Weight	Level three index	Weight	Good	Normal	Poor	Key veto factor
Reservoir conditions and storage potential		Characterist ic of the best reservoir	0.60	Lithology	0.07	Clastic	Mix of Clastic and Carbonate	Carbonate	
	0.50			Single layer thickness h/m	0.11	≥80	30 ≤ h < 80	10 ≤ h < 30	< 10
				Sedimentary facies	0.36	River, Delta	Turbidity, Alluvial fan	Beach bar, Reef	
				Average porosity φ/%	0.20	≥15	$10 \le \varphi < 15$	$5 \le \varphi < 10$	< 5
				Average permeability k/ mD	0.27	≥50	10 ≤ k < 50	$1 \le k < 10$	< 1
		Storage potential	0.40	Storage potential per unit area G (10 ⁴ t/km ²)	1.00	≥100	10 ≤ G < 100	< 10	
	0.50	Characterist ic of the main caprock	0.62	Lithology	0.30	Evaporites	Argillite	Shale and dense limestone	
				Thickness h/m	0.53	≥100	50 ≤ h < 100	10 ≤ h < 50	< 10
Geological safety				Depth D/m	0.11	<1000	1000 ≤ D ≤ 2700	>2700	
				Buffer caprock above the main caprock	0.06	Multiple sets	Single set	None	
		Hydrodyna mic 0.24 conditions		Hydrodynamic conditions	1.00	Groundwater high- containment area	Groundwate r containment area	Groundwater semi- containment area	Groundw ater open area
				Peak ground acceleration	0.50	< 0.05 g	0.05 g, 0.10 g	0.15 g, 0.30 g	≥0.40 g
		Seismic activity	0.14	Development degree of fractures	0.50	Simple	Moderate	Complex	Within 25 km of active

3.4 Geological suitability assessment for CO2-EWR target selection

CONTENTS

- 1. 研究背景 Background
- 2. 准噶尔盆地碳源分布 CO₂ sources in the Junggar Basin
- 3. 次盆地尺度CO₂理论封存潜力 Theoretical meso-scale potential of CGUS
- 4. 准东地区咸水层封存源汇匹配分析 Source-sinking matching of aquifers CO₂ storage
- 5. 准东CO₂-EWR先导性试验示范模拟研究 Numerical simulation of CO₂-EWR in Eastern Junggar

China Australia Geological Storage of CO2

4.1 Geographic information for GIS analysis

Remote sensing 基础遥感信息 rage of CO2

4.2 Cost Surface

4.3 Source-sink matching of aquifers CO2 storage

Cost surface

Ch

H

Ca

- 源汇匹配条件好;多处场地可就近封存(<50 km);
- Conditions of source-sink matching is good for deep saline aquifers or CO2-EWR; Most of CO2 sources can match a suitable storage site nearby (<50 km).

100

4.3 Source-sink matching of aquifers CO₂ storage

Eastern Junggar Basin

- ≻ 准东地区适宜开展CO₂-EWR或咸水 层封存示范项目。
- 排放源主要是电厂和化工厂; 电 厂正在建设,运营后年排放量约 17.61Mt
- 广汇新能源:西北部的乌伦古坳 陷深部咸水层封存潜力巨大,地质 条件较好
- Eastern Junggar Basin is suitable for early demonstration of CO₂-EWR or deep saline aquifer CO2 storage.
- Main CO2 sources: mainly are chemistry industries and power plants.
- After completing construction and put into operation, the total emissions is about 17.61Mt/a.
- Guanghui New Energy co., LTD: Ulungur depression located to the northwest of Guanghui, has large aquifer storage capacity and good geological conditions.

CONTENTS

- 1. 研究背景 Background
- 2. 准噶尔盆地碳源分布 CO₂ sources in the Junggar Basin
- 3. 次盆地尺度CO₂理论封存潜力 Theoretical meso-scale potential of CGUS
- 4. 准东地区咸水层封存源汇匹配分析 Source-sinking matching of aquifers CO₂ storage
- 5. 准东CO₂-EWR先导性试验示范模拟研究 Numerical simulation of CO₂-EWR in Eastern Junggar

China Australia Geological Storage of CO2

5.1 CO2 geological storage survey in Eastern Junggar

Xinjiang, Junggar Basin

Ca

China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

<u>"准噶尔等盆地二氧化碳</u> <u>地质储存综合地质调</u> 查":准东地区阜康北部 二氧化碳地质储存碳储工 程场地选址调查评价

Geological survey for CO2-EWR in Eastern Junggar Basin, Xinjiang

5.2 CGS Pilot project site of CO2-EWR in Eastern Junggar

High precision gravity exploration

High precision gravity exploration

Sequential stratigraphy correlation

China Australia Geological Storage of CO₂

2D seismic exploration and downhole test

• 地层平缓

• 第1层砂层不明显

• 第2层和第3层有明显的砂岩透镜体

✓ 2038.00-2065 m: in progress

 2246.50-2265 m: hydraulic discharge is about 42 m³/d, TDS 40g/L, CaCl2

2392.00-2407 m: hydraulic discharge
 is about 41 m³/d, TDS 30g/L, CaCl2

Magnetotelluric sounding (MT) exploration

准噶尔等盆地二氧化碳地质储存综合地质调查大地电磁法I线勘查结果

Electrical resistivity

D/m

Cc

Next work plan

✓ 技术经济分析(乌伦古坳陷适宜区和D7井)

On basis of studies of source-sink matching, choose the suitable sites in Ulungur depression in the Junggar Basin and D7 well for technical and economic analysis of $\rm CO_2-EWR$

✓ D7井储层表征(包括理论地下水资源量和CO₂封存量)

Reservoir characterization, including assessment of groundwater resources and theoretical potential of $\rm CO_2$ storage of 3 main reservoirs

✓ D7井C02-EWR方案模拟

Numerical simulation of CO_2 -EWR plan in D7 well, and choose the most suitable reservoir for possible "push-pull" test

✓ 进一步合作

Further cooperation in reservoir characterization, numerical simulation, monitoring, et al. of CO_2 -EWR or saline aquifer CO_2 storage

China Australia Geological Storage of CO2

神华CCS示范工程

Shenhua CCS Project

- C02由注入井向西北方向运移 扩散,刘家沟组初始运移距离 较小,但到2014年11月,随着 C02注入量的增大,刘家沟组 运移距离增大较明显,马家沟 组注入量则极少。
- 垂向上,主要表现为C02向储
 层上部运动,因此刘家沟组和
 石千峰组上部吸收的C02最
 多。从C02分布饱和度模拟结
 果来看,注入井射孔段较高,
 局部达90%以上。
- 数值模拟与L1 VSP地震监测数 据之间的差异在于,数值模拟 结果显示石千峰组运移距离最 远,但地震预测结果显示石盒 子组运移距离最远。
- 推测可能为模型中C02上浮的 模型或参数设置问题?

<u>CO2 flow underground in Shenhua CCS Demo-project</u> storage site

Thanks for your attention

No. IN SPACE SHALL PROPERTY IN