Numerical Simulation of Water Rock Interaction and Fluid Flow

Liuqi Wang & Rick Causebrook Geoscience Australia

CAGS WORKSHOP II'2010

Outline

- 1. Introduction
- 2. Geochemical Modelling
- 3. Full Physics Compositional Simulation
- 4. Case Study
- 5. Summary

1 Introduction

Trapping Mechanisms for CO₂ Storage Process in Saline Aquifer

Hydrodynamic and structural trapping

Solubility trapping

>Storing CO_2 as a soluble component in brine

Residual gas trapping

Trapping as immobile residual gas (Sgrm)

Mineralization trapping

- Water-rock interaction
- Long-term storage of green house gas

Full-Physics Compositional Simulation

- Convective and dispersive flow
- Relative permeability hysteresis
- ➤Gas solubility in aqueous phase
- >Aqueous chemical equilibrium reactions
- Mineral dissolution and precipitation kinetics
- ➤Vaporization of H₂O
- Predictions of brine density and viscosity
- Leakage through cap rock and thermal capability
 China Australia Geological Storage of CO₂
 中澳二氧化碳地质封存

Cap rock	2	Possible leakage	
Gas phase	co †	Flow	
Aqueous phase	CO CO ₂ (aq) + H ₂	↓ ₂(aq) O , 1 H⁺ + HCO ₃	Flow
Minerals	- Calcite + H*	→ Ca ⁺⁺ + HCO ₃	

What reactions could be critical?

► As injected CO₂ dissolves in formation water, it produces a weak acid (carbonic acid) which can chemically react with minerals in the host reservoir rock. Some of these reactions can result in the precipitation of new minerals and solid compounds in the formation pore space, effectively trapping the injected CO₂ (IPCC, 2005, Chevron Australia, 2005).

➢In most geological strata, the formation of calcium, magnesium, and iron carbonates is expected to be the primary mineral trapping process (White et al. 2001, 2002, 2004, 2005).

2 Geochemical Modelling

Static equilibrium model

➤Solution of coupled non-linear equations

Closed system kinetic model

Solution of coupled non-linear ordinary differential equations

≻Flowing system

Solution of coupled non-linear partial differential equations

After Stephen Talman, CMG Training, 2010

Static Equilibrium Model

≻<u>Input:</u>

Water Analysis
Thermodynamic Database
Temperature
Pressure

≻<u>Output:</u>

- Saturation Index and Aqueous Speciation
- ✓ Charge Balance
- Modification to Downhole Conditions
- ✓Geothermometers

Fundamental Concepts (1)

Charge Balance:

$$\frac{\sum (\text{molality} \times \text{charge})_{\text{Cations}} - \sum (\text{molality} \times \text{charge})_{\text{Anions}}}{\sum (\text{molality} \times \text{charge})_{\text{Cations}} + \sum (\text{molality} \times \text{charge})_{\text{Anions}}} \times 100$$

---More than +/-5% indicates problems with major components in aqueous phase.

CO₂ Pressure in equilibrium with the fluid:

 $CO_2(gas) + H_2O \leftrightarrow HCO_3^- + H^+$

---Atmospheric log PCO_2 =-3.5 If fluid PCO_2 > atmospheric, degassing occurs If fluid PCO_2 < atmospheric, adsorption from atmosphere occurs

Fundamental Concepts (2)

>Law of Mass Action:

Any reaction at EQUILIBRIUM, the activity product is a constant (*Keq*) at a given temperature and pressure. For example,

$$CaCO_3(s) + 2H^+(aq) \leftrightarrow Ca^{++}(aq) + H_2CO_3(aq)$$

$$Q = \frac{a_{Ca^{++}(aq)} \cdot a_{H_2CO_3(aq)}}{a_{CaCO_3(s)} \cdot a_{H^+}^2}$$

> Activity = Concentration × Activity Coefficient

The activity of a pure solid (e.g. $CaCO_3(s)$) is generally 1.0

Chemical Equilibrium Between Aqueous Species

➢ Fast reversible aqueous reactions are modeled with chemical equilibrium reactions

✓ Instantaneous and no rate associated with them.➢ Typical reaction:

 $CO_2(aq) + H_2O = H^+ + HCO_3^-$

> The concentrations of the species in solution are determined from chemical equilibrium constants

$$K_{eq}(T) = \frac{a_{H^+} \cdot a_{HCO_3^-}}{a_{CO_2(aq)} \cdot a_{H_2O}}$$

'a' is the activity which is also a measure of concentration.

Aqueous Species

≻Activities of aqueous species:

$$a_{H_2O} \approx 1$$

 $a_i = \gamma_i \cdot m_i$
 $\gamma_i = \text{activity coefficient of species i}$
 $m_i = \text{molality of species i (moles i / kgH_2O)}$

➤Activity coefficient models

Ideal solution: $\gamma_i = 1$ Debye-Hückel model
B-dot model

B-dot Model

$$\log \gamma_i = -\frac{Az_i^2 \sqrt{I}}{1 + \dot{a}_i B \sqrt{I}} + \dot{B}I$$
$$I = \frac{1}{2} \sum_{k=1}^{n_{aq}} m_k z_k^2$$

I = ionic strength $m_k = \text{molality of component k}$ $z_k = \text{charge of component k}$

 $\dot{a}_i = \text{ion size parameter of component i}$

A, B, \dot{B} = temperature - dependent parameters

pH Value

> Definition: $-\log_{10}(a_{\mu^+})$

 a_{H^+} is the activity of the hydrogen ion in the solution.

The pH is of critical importance in determining the behaviour of many ions and solids in solutions. Aqueous Species Dominance Diagram

e.g.,

5

$$CaCO_{3}(s) + 2H^{+} \leftrightarrow Ca^{++} + HCO_{3}^{-}$$
$$CO_{2}(aq) + H_{2}O \leftrightarrow HCO_{3}^{-} + H^{+}$$

Closed System Kinetic Model

≻<u>Input:</u>

- ✓ Static equilibrium modelling results
- Mineral Characteristics
- ✓Kinetic Database
- ✓Time

≻<u>Output:</u>

- ✓ Saturation Index with Time
- ✓Mineral Mass Changes
- ✓Gas Uptake
- Solution Composition with Time

After Stephen Talman, CMG Training, 2010

Unstable Minerals under Acidic Environment (Examples)

➤Geochemical modelling considers all kinds of chemical reactions

➤Carbonate mineral:

---Calcium, magnesium, and iron carbonates

≻Feldspar:

---Potassium-feldspar to Anorthite, etc.

≻Clay minerals:

---Kaolinite, Illite, Smectite, etc.

➤Volcanic clastics (?)

≻Others (?)

Simple Example of Water-Rock Interaction

$$Co_{2}(aq) + H_{2}O \leftrightarrow H^{+} + HCO_{3}^{-}$$

$$CaAl_{2}Si_{2}O_{8} + 2H^{+} + H_{2}O \leftrightarrow Ca^{2+} + AlSi_{2}O_{5}(OH)_{4}$$

$$Ca^{2+} + HCO_{3}^{-} \leftrightarrow CaCO_{3} + H^{+}$$

$$CaAl_{2}Si_{2}O_{8} + CO_{2}(aq) + H_{2}O = Al_{2}Si_{2}O_{5}(OH)_{4} + CaCO_{3}$$
Anorthite Kaolinite Calcite

Reaction Rate

Reaction Rates

Phases	Fast	Intermediate	Slow
carbonate	+		
salts	+		
feldspar			+
quartz			+
oxides/hydroxides	+	+	+
sulfides		+	
clays		+	+
homogeneous (water, gas & oil)	+	+	

Stephen Talman, 2010

k : reaction rate at temperature T k_0 : reaction rate at temperature T_0 E_a: activation energy R : gas constant

Cc

China Australia Geological Storage of CO2

3 Full Physics Compositional Simulation

≻<u>Input:</u>

✓Important chemical reactions based on the kinetic modelling

Reservoir Characteristics (eg. Relperm, porosity, saturation, etc.)
 PVT

✓ Injection/Production History

≻<u>Output:</u>

- ✓ Fluid Composition
- ✓ Mineralogical Changes
- ✓ Flow Paths
- ✓ Phase Redistribution

Mineral Dissolution & Precipitation

Calcite(solid) + H⁺ = Ca⁺⁺ + HCO₃

$$\frac{V}{\Delta t}(N_i^{n+1} - N_i^n) = r_i$$

 $r_i = V \cdot A \cdot k \cdot \left(1 - \frac{Q}{K_{eq}}\right)$
 $Q = \frac{a_{Ca^{++}} \cdot a_{HCO_3^-}}{a_{H^+}}$
V = bulk volume (m³)
A = reactive surface area (m²/m³)
k = rate constant (mol/m² s)
K_{eq} = chemical equilibrium constant
China Australia Geological Storage of CO₂
中 澳 二 氧 化 碳 地 质 封 存

 $Q/K_{eq} =$ saturation index $Q/K_{eq} > 1 \rightarrow$ mineral precipitation $Q/K_{eq} < 1 \rightarrow$ mineral dissolution

Material Balance Equation for CO₂

$$\begin{split} & \Delta T_{g} \ y_{CO_{2},g} \ \Delta \Phi_{g} \ + \\ & \Delta T_{w} \left(y_{CO_{2},aq} + y_{HCO_{3}^{-},aq} + y_{CO_{3}^{--},aq} \right) \Delta \Phi_{w} \\ & + \ r_{x} \ + \ q_{CO_{2}(g)} \ + \ q_{CO_{2}(aq)} \ + \ q_{HCO_{3}^{--}} \ + \ q_{CO_{3}^{--}} \\ & - \frac{V}{\Delta t} \left[\left(N_{CO_{2}} \ + \ N_{HCO_{3}^{--}} \ + \ N_{CO_{3}^{--}} \right)^{n+1} \ - \\ & \left(N_{CO_{2}} \ + \ N_{HCO_{3}^{--}} \ + \ N_{CO_{3}^{--}} \right)^{n} \right] = \ 0 \\ N_{CO_{2}} \ = \ N_{CO_{2}(g)} \ + \ N_{CO_{2}(aq)} \\ & T_{ij} - molar \ transmissibility \ of \ component \ i \ in \ phase \ j \end{split}$$

 y_{ij} - molar fraction of component i in phase j

V - gridblock bulk volume (m3)

 \boldsymbol{q}_i - molar injection rate of component i (mol/day)

 \boldsymbol{N}_i - moles of component i per gridblock volume

China Australia Geological Storage of CO2

Geochemical Reaction Selection in the Numerical Simulator

 Aqueous Species Reactions 	Chemical Equilibrium Equation Derivatives — C Analytical		Additional Component Selection		election			
C Mineral Species Reactions	Mineral Precipitation/Dis	ral Precipitation/Dissolution Rate Equation Derivatives — .nalytical						
vailable Reactions	10	2.2	Selected Reactions					
02HP04 = (HP04-) + (Np02++) 102HP04) = (HP04-) + (Np02+) 02OH+ (H+) = H20 + (Np02+) 02OH+ (H+) = H20 + (Np02++) 02S04 = (S04-) + (Np02+) 102S04) = (S04-) + (Np02+) 10H++) + (H+) = (Np++++) + H20 10H++) + (H+) = (Np++++) + H20 1S04++) = (Np++++) + (S04-)	•	Apply Selection(s)	CO2(aq) + H2O = (H+) (CO3) + (H+) = (HCO3 Reaction Selection Reaction Type :	+ (HC03-) -) Mineral Reaction Data	Aqueous Phase Prope	rty Models Aqueou ium Equation Derivativ	s Phase Gas Solubility ves	Additional Component Selection
H) + (H+) = H2O (07) + H2O = 2 (HPO4) (4) + (H+) = (HPO4)			C Aqueous S	Species Reactions	C Analytical	Num	nerical	Include Na+ and CI- ions
CO3 + (H+) = (Pb++) + (HCO3-) iCl+) = (Pb++) + (Cl-) Cl2 = (Pb++) + 2 (Cl-) Cl2 = (Pb++) + 2 (Cl-)			Mineral Sp	ecies Reactions	Mineral Precipitati	on/Dissolution Rate E	quation Derivatives — nerical	
(GF) (GF) (GF) (GF) = (Pb++) + (GF) (F+) = (Pb++) + (F-) F2 = (Pb++) + 2 (F-) H2PO4+) = (Pb++) + (H+) + (HPO4-) HPO4 = (Pb++) + (HPO4-) PO4+) + (H+) = (Pb++) + (HPO4-)	*	Clear All Reactions	4wailable React Jarosite-Na + 6 (h K(UO2)(AsO4)(c) K-feldspar + 4 (H	tions H+) = 2 (SO4–) + 3 (Fe+++) = (UO2++) + (AsO4–) + (K +) = 2 H2O + (K+) + (Al+++)	+ 6 H2O + (Na+) +) + 3 SiO2(aq)	Apply Selection(s)	Selected Reactions Anorthite + 8 (H+) = 4 H Calcite + (H+) = (Ca++) Kaolinite + 6 (H+) = 5 H	120 + (Ca++) + 2 (A +++) + 2 SiO2(aq) + (HCO3-) 20 + 2 (A +++) + 2 SiO2(aq)
			K2C207 + H20 = K2C207 + H20 = K2Cr04 = 2 (K+) + K2SE = 2 (K+) + (K+) KMgCl3 = (K+) + (H+) KMgCl3 = (K+) + (K+) KMgCl3 = (K+) + KAIsilite + 4 (H+) Kasolite + 4 (H+) Kasolite + 4 (H+) Lawroncite = (Fe+	$\begin{array}{l} (1+) = 2 \ (K+) + (R+O3) + 2 \\ (CrO4-) \\ (CrO4-) \\ 3e-) \\ 2O+2 \ (H+) = 8 \ (K+) + 6 \ (HC \\ Mg++) + 3 \ (C+) \\ (K+) + (Mg++) + 2 \ H2O + 3 \ (K+) + (H+) \\ (K+) + (K+) + (Na+) + (HCC \\ (TC04-) \\ 4g++) + (C+) + (S04-) + 3 \\ (HCO3-) \\ = 2 \ H2O + (K+) + (Al+++) + S \\ = (UO2++) + (Pb++) + SiO2 \\ (1+) + SiO2(aa) + 2 \\ H2O + 2 \ (Al+++) + SiO2(aa) + 2 \\ H2 \\ (Ca++) + SiO2(aa) + 2 \\ H2 $	03-) + 3 H2O Cl-) 33-) + 6 H2O 20 iO2(aq) iO2(aq) aq) 0 +++) + 4 SiO2(aq)	Delete Selection(s)		213
	Chin	a Aust	ralia Ge	ological St	orage of	CO ₂		
					-			
		11/2		V TH +H		17		

4 Case Study: Case 1

>CO₂ Injection at the Middle of Reservoir:

Solution: $5m \times 10m \times 5m$

Sid Number: $200 \times 1 \times 20$

➢Dip angle of grid system: 2.0 degree

➢Porosity: 0.18

➢Permeability: 100md, Kv/Kh=1

≻Sgrm = 0.2

≻Injection Well: (101, 1, 1)

≻Perforation Interval: (101, 1, 18) to (101,1, 20)

>Injection Rate: 1×10^4 m³/day (STG surface gas rate)

➢Injection Period: 2000-1-1 to 2003-1-1

➢Simulation Period: 2000-1-1 to 2200-1-1

Volume Fraction: Anorthite (1%), Calcite (1%) & Kaolinite (2%)

Aqueous & Mineral Reactions

Aqueous species reaction:

 $H_2O \leftrightarrow H^+ + OH^ CO_2(aq) + H_2O \leftrightarrow H^+ + HCO_3^ HCO_3^- \leftrightarrow H^+ + CO_3^{--}$

Mineral species reaction:

Calcite + H⁺ \leftrightarrow Ca⁺⁺ + HCO₃⁻ Anorthite + 8H⁺ \leftrightarrow Ca⁺⁺ + 2Al⁺⁺⁺ + 2SiO₂(aq) + 4H₂O Kaolinite + 6H⁺ \leftrightarrow 5H₂O + 2SiO₂(aq) + 2Al⁺⁺⁺

Simulation Results (200yrs) (1)

Simulation Results (200yrs) (2)

Molality of Anorthite

Molality of Calcite

Molality of Kaolinite

Molality of Al+++

China Australia Geological Storage of CO2

Simulation Results (200yrs) (3)

Simulation Results of Case I (200yrs)

≻<u>Total Cum Inj</u>, mol = 1.28126E+08

≻<u>3 years later:</u>

CO₂ Storage Amounts in Reservoir

Supercritical Phase Trapped due to Hysteresis Dissolved in Water Present in Aqueous Ions Present in Mineral Precipitate

>200years later:

CO2 Storage Amounts in Reservoir

Supercritical Phase Trapped due to Hysteresis Dissolved in Water Present in Aqueous Ions Present in Mineral Precipitate

Moles

- = 1.11307E+08 4.89863E+06
- = 2.42978E+07 1.06934E+06

kg

kq

- = 1.68263E+07 7.40524E+05
- = 2.06357E+06 9.08176E+04
- = -2.50461E+05 -1.10228E+04

Moles

- = 6.89380E+07 3.03396E+06
- = 4.11539E+07 1.81118E+06
- = 5.71292E+07 2.51426E+06
- = 3.67423E+06 1.61703E+05
- = 2.35526E+05 1.03655E+04

China Australia Geological Storage of CO2

Long-Term Storage

Moles of CO₂

Moles of minerals

Influence of Mineral Content (Case 2)

Volume Fraction: Anorthite (10%), Calcite (10%) & Kaolinite (2%)

>Other conditions same as in Case 1

Moles of CO₂

Moles of minerals

Influence of Mineral Content

5 Summary

>Analyses on the chemical properties of aqueous phase and initial mineral components are critical before numerical simulation process.

>Geochemical modelling (static equilibrium model and closed system kinetic model) provides understandings of geochemical evolution after CO_2 injection through modelling saturation index, solution composition and mineral mass with time. Hence the important chemical reactions will be advised for the full-physics compositional simulator.

► Based on the combinations of fluid flow dynamics and the selection of important geochemical reactions, the coupled simulation is able to provide information on CO_2 plume movement, effective storage capacity together with changes of minerals of rock, chemical properties (ions) of brine water and petrophysical properties.

> Mineral precipitation will be significant for safe long-term storage of CO_2 in saline aquifer.

Numerical Simulation of Water Rock Interaction and Fluid Flow

Liuqi Wang & Rick Causebrook Geoscience Australia

CAGS WORKSHOP II'2010

